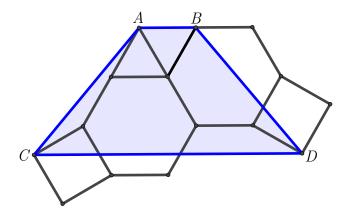


## 10<sup>a</sup> Olimpíada Iraniana de Geometria Nível Elementar

22 de outubro de 2023

Os problemas desta prova devem ser mantidos em sigilo até que sejam publicados no site oficial da IGO: igo-official.com

**Problem 1.** Todos os polígonos da figura abaixo são regulares. Prove que ABCD é um trapézio isósceles.



**Problem 2.** Em um triângulo isósceles ABC com AB = AC e  $\angle A = 30^{\circ}$ , pontos L e M estão nos lados AB e AC, respectivamente tais que AL = CM. O ponto K está no segmento AB de forma que  $\angle AMK = 45^{\circ}$ . Se  $\angle LMC = 75^{\circ}$ , demonstre que KM + ML = BC.

**Problem 3.** Seja ABCD um quadrado de lado 1. Quantos pontos P no interior do quadrado (não nos lados) têm a propriedade de que o quadrado pode ser cortado em 10 triângulos de mesma área tais que todos tenham P como vértice?

**Problem 4.** Seja ABCD um quadrilátero convexo. Seja E a interseção de suas diagonais. Suponha que CD = BC = BE. Mostre que  $AD + DC \ge AB$ .

**Problem 5.** Um polígono é decomposto em triângulos ao desenhar algumas diagonais interiores que não se intersectam de forma que para todo par de triângulos da triangulação que tem um lado em comum vale que a soma dos ângulos opostos ao lado em comum é maior que 180°.

- 1. Prove que tal polígono é convexo.
- 2. Prove que o circuncírculo de todo triângulo usado na decomposição contém o polígono inteiro em seu interior.

Tempo: 4 horas. Cada problemas vale 8 points.

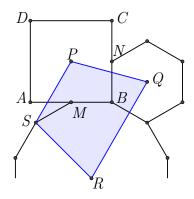


## 10<sup>a</sup> Olimpíada Iraniana de Geometria Nível Intermediário

22 de outubro de 2023

Os problemas desta prova devem ser mantidos em sigilo até que sejam publicados no site oficial da IGO: igo-official.com

**Problem 1.** Os pontos M e N são os pontos médios dos lados AB e BC do quadrado ABCD. De acordo com a figura, temos desenhado um hexágono regular e um 12-ágono regular. Os pontos P, Q e R são os centros desses três polígonos. Prove que PQRS é um quadrilátero cíclico.



**Problem 2.** Um hexágono convexo ABCDEF com um ponto interior P é dado. Assuma que BCEF é um quadrado em que ambos ABP e PCD são triângulos retângulos isósceles com ângulos retos em B e C, respectivamente. As retas AF e DE se intersectam em G. Prove que GP é perpendicular a BC.

**Problem 3.** Seja  $\omega$  o circuncírculo de um triângulo ABC com  $\angle B=3\angle C$ . A bissetriz interna de  $\angle A$  intersecta  $\omega$  e BC em M e D, respectivamente. O ponto E está na reta MC tal que M está entre C, E e ME é igual ao raio de  $\omega$ . Prove que os circuncírculos dos triângulos ACE e BDM são tangentes.

**Problem 4.** Seja ABC um triângulo e P o ponto médio do arco BAC do circuncírculo do triângulo ABC com ortocentro H. Sejam Q, S os pontos tais que HAPQ e SACQ são paralelogramos. Seja T o ponto médio de AQ e R a interseção das retas SQ e PB. Prove que AB, SH e TR são concorrentes.

**Problem 5.** São dados n pontos no plano tais que ao menos 99% dos quadriláteros com vértices nesses pontos são convexos. Podemos achar um polígono convexo no plano tendo ao menos 90% dos pontos como vértices?

Tempo: 4 horas. Cada problemas vale 8 points.



## 10<sup>a</sup> Olimpíada Iraniana de Geometria Nível Avançado

22 de outubro de 2023

Os problemas desta prova devem ser mantidos em sigilo até que sejam publicados no site oficial da IGO: igo-official.com

**Problem 1.** Seja ABC um triângulo acutângulo. A bissetriz de  $\angle BAC$  intersecta BC em P. Os pontos D e E estão nos segmentos AB e AC, respectivamente, tais que  $BC \parallel DE$ . Os pontos K e L estão nos segmentos PD e PE, respectivamente, tais que os pontos A, D, E, K, L são concíclicos. Prove que B, C, K, L também são concíclicos.

**Problem 2.** Seja ABC um triângulo com incentro I. As retas BI, CI intersectam os lados AC, AB em X, Y, respectivamente. Seja M o ponto médio do arco BAC do circuncírculo de ABC. Suponha que o quadrilátero MXIY é cíclico. Prove que a área do quadrilátero MBIC é igual à área do pentágono BCXIY.

**Problem 3.** São dados finitos pontos,  $A_1, A_2, \ldots, A_n$  em um segmento S de comprimento L. Para cada ponto  $A_i$ , seja  $c_i$  um disco fechado com centro em  $A_i$  e raio menor ou igual a 1. Denote a união dos  $c_i$ 's por C. Prove que o perímetro de C é menor que 4L + 8. (Os raios dos discos não são necessariamente iguais).

**Problem 4.** Suponha que as bissetrizes de  $\angle B$  e  $\angle C$  em um triângulo ABC intersectam AC e AB em E e F, respectivamente. Denote o ponto de interseção de BE, CF por I e seja D o pé da perpendicular por I a BC. Sejam M e N os ortocentros dos triângulos AIF e AIE, respectivamente. As retas EM e FN concorrem em P. Seja X o ponto médio de BC. Seja Y o ponto na reta AD tal que  $XY \perp IP$ . Prove que a reta AI bissecta o segmento XY.

**Problem 5.** Em um triângulo ABC os pontos médios de AC e AB são M e N, respectivamente, e D é a projeção de A em BC. O ponto O é o circuncentro de ABC e os circuncírculos de BOC, DMN se intersectam em R, T. As retas DT, DR intersectam MN em E e F, respectivamente. As retas CT, BR se intersectam em K. Considere P um ponto em KD tal que PK é bissetriz de  $\angle BPC$ . Prove que os circuncírculos de ART e PEF são tangentes.