47ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Fase Única – Nível 3 (Ensino Médio) PRIMEIRO DIA

1. Prove que existe um inteiro positivo n e 2n números reais não negativos

$$0 \le a_1 \le a_2 \le a_3 \le \ldots \le a_n$$
 e $0 \le b_1 \le b_2 \le b_3 \le \ldots \le b_n$

satisfazendo as três propriedades a seguir:

(i)
$$a_1 + a_2 + \dots + a_n \ge 2025^{2025}$$
;

(ii)
$$b_1 + b_2 + \dots + b_n \ge 2025^{2025}$$
;

(iii)
$$c_1 + c_2 + \dots + c_n \le \frac{1}{2025^{2025}}$$
, onde $c_i = \min\{a_i, b_i\}$ para todo $i \in \{1, 2, \dots, n\}$.

Além disso, encontre o menor inteiro positivo n com tal propriedade.

- **2.** Seja ABC um triângulo acutângulo com AB < AC e seja Γ sua circunferência circunscrita. Defina M como o ponto médio do lado BC, e D, E e F como os pés das alturas relativas aos lados BC, AC e AB, respectivamente. Tome o ponto N como a interseção de EF e AM. Sejam AB, AB as interseções de AB e AB forma que AB esteja no arco menor AB de AB e AB esteja no arco menor AB de AB e AB esteja no arco menor AB de AB e AB e
- **3.** Seja $(a_n)_{n\geq 1}$ uma sequência infinita de inteiros positivos tal que
 - (i) $a_1, a_2, \ldots, a_{10000}$ são inteiros positivos distintos dois a dois;
 - (ii) para n > 10000, define-se a_n como o menor inteiro positivo diferente de $a_1, a_2, \ldots, a_{n-1}$ tal que $|a_n a_{n-1}|$ é uma potência de 2025 (note que 1 é uma potência de 2025).

Prove que todo inteiro positivo aparece na sequência.

47° OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Fase Única – Nível 3 (Ensino Médio) SEGUNDO DIA

4. Para todo n inteiro positivo, defina

$$f(n) = |\sqrt{1}| + |\sqrt{2}| + \cdots + |\sqrt{n}|.$$

Determine todos os inteiros positivos k tais que existe um inteiro positivo n satisfazendo f(n) = nk. Observação: para um número real x, define-se $\lfloor x \rfloor$ como o maior inteiro que é menor ou igual a x. Por exemplo, $\left| \sqrt{1} \right| = \lfloor 1 \rfloor = 1$, $\left| \sqrt{2} \right| = 1$ e $\left| \sqrt{14} \right| = 3$.

5. Seja \mathcal{P} um polígono convexo de n vértices, $n \geq 4$. Podemos particionar \mathcal{P} em triângulos, traçando diagonais que não se intersectam no interior de \mathcal{P} . Uma partição desse tipo é chamada de *triangulação*. Um conjunto X de diagonais de \mathcal{P} é dito *obstrutivo* se tem a seguinte propriedade:

Qualquer triangulação de \mathcal{P} utiliza ao menos uma diagonal que pertence ao conjunto X.

Determine, em função de *n*, qual é a menor quantidade possível de elementos de um conjunto obstrutivo.

6. Seja ABCD um quadrilátero convexo satisfazendo $90^{\circ} > \angle ABC > \angle CDA > \angle DAB$. Seja $\mathcal R$ o conjunto de todas as retas ℓ tais que existe uma circunferência tangente às quatro reflexões de ℓ pelos quatro lados do quadrilátero ABCD. Prove que $\mathcal R$ pode ser particionado em 8 conjuntos de modo que as retas de cada conjunto sejam todas concorrentes ou todas paralelas.