47ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Fase Única – Nível Universitário PRIMEIRO DIA

- **1.** Seja $\pi(x)$ a quantidade de primos positivos menores ou iguais a $x, x \in \mathbb{R}$. Mostre que não existe uma função contínua $f:[0,+\infty)\to\mathbb{R}$ satisfazendo $\lim_{x\to\infty}(f(x)-\pi(x))=0$.
- **2.** Determine se existem a, b, c, d inteiros tais que as sequências $(\alpha_n)_{n\geq 0}$ e $(\beta_n)_{n\geq 0}$ definidas por
 - $\alpha_0 = \beta_0 = 0$;
 - $\alpha_1 = \beta_1 = 1$;
 - $\alpha_{n+2} = a\alpha_{n+1} + b\alpha_n$ para $n \ge 0$;
 - $\beta_{n+2} = c\beta_{n+1} + d\beta_n$ para $n \ge 0$;

que satisfazem $\beta_n \neq 0$, $\forall n \geq 1$ e as duas condições a seguir:

(i) Existem infinitos naturais N tais que

$$1 - \frac{1}{2^{2025}} < \frac{|\alpha_N|}{|\beta_N|} < 1 + \frac{1}{2^{2025}};$$

(ii) Existem infinitos naturais M tais que

$$\frac{|\alpha_M|}{|\beta_M|} > 2^{2025}.$$

- **3.** Dado um conjunto não vazio $X \subset \mathbb{R}^k$, $k \in \{2,3\}$, dizemos que q é de *módulo mínimo em* X se $q \in X$ e $|q| \le |p|, \forall p \in X$.
 - (a) Seja $A: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear invertível, e seja $\Lambda = A(\mathbb{Z}^2) = \{A(x,y) \mid x,y \in \mathbb{Z}\}$. Sejam u de módulo mínimo em $\Lambda \setminus \{(0,0)\}$ e v de módulo mínimo em $\Lambda \setminus \{tu \mid t \in \mathbb{R}\}$. Prove que $\Lambda = \{ku + mv \mid k, m \in \mathbb{Z}\}$.
 - (b) Sejam $B: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear invertível, e

$$\Gamma = B(\mathbb{Z}^3) = \{B(x, y, z) \mid x, y, z \in \mathbb{Z}\}.$$

Supondo que u seja de módulo mínimo em $\Gamma \setminus \{(0,0,0)\}$, v seja de módulo mínimo em $\Gamma \setminus \{tu \mid t \in \mathbb{R}\}$ e w seja de módulo mínimo em $\Gamma \setminus \{tu + sv \mid t, s \in \mathbb{R}\}$, Prove que $\Gamma = \{ku + mv + nw \mid k, m, n \in \mathbb{Z}\}$.

47ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Fase Única – Nível Universitário SEGUNDO DIA

4. Sejam $A, B \in M(n, \mathbb{C})$, i.e., A, B matrizes $n \times n$ com entradas em \mathbb{C} , e $P \in \mathbb{C}[X]$ um polinômio não-constante tal que $P(0) \neq 0$ e AB = P(A). Prove que a matriz A é invertível e que as matrizes A e B comutam (isto é, que AB = BA).

5.

- (a) Seja $(a_n)_{n\geq 1}$ uma sequência decrescente de termos positivos tal que a série $\sum_{n=1}^{\infty} \frac{a_n}{n}$ diverge. Prove que para qualquer sequência crescente $(n_k)_{k\geq 1}$ de inteiros positivos com $\frac{n_{k+1}}{n_k}$ limitada, a série $\sum_{k=1}^{\infty} a_{n_k}$ diverge.
- (b) Seja $(a_n)_{n\geq 1}$ uma sequência de termos positivos tal que a série $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converge. Prove que existe uma sequência crescente $(n_k)_{k\geq 1}$ de inteiros positivos com $\lim_{k\to\infty} \frac{n_{k+1}}{n_k} = 1$ tal que a série $\sum_{k=1}^{\infty} a_{n_k}$ converge.

6.

(a) Seja $g: \mathbb{R} \to (-1,1)$ a bijeção dada por

$$g(x) = \tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Dado $r \in [0,1)$, prove que existe $\lambda(r) \in [0,1)$ com a seguinte propriedade: para toda função racional

$$f(x) = \frac{ax + b}{cx + d}$$

com a,b,c e d números reais e |d| > |c| tal que $f((-1,1)) \subset (-r,r)$, temos $|(g^{-1} \circ f \circ g)'(x)| \le \lambda(r), \forall x \in \mathbb{R}$.

(*b*) Determine o menor $\lambda = \lambda(r)$ possível no item anterior.