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Aos leitores

Eureka 43! É com esse espírito de descoberta e entusiasmo que apresentamos
à comunidade olímpica mais uma edição da nossa revista. Os últimos anos têm sido
transformadores para diversos setores e hábitos da nossa sociedade. Com a comunidade
olímpica não tem sido diferente. O fácil acesso ao conhecimento, o aumento do número
de materiais, sejam notas de aulas, livros, vídeos, entre tantos outros, vêm mudando
completamente a velocidade e os hábitos de aprendizado de todos nós, especialmente
do público mais jovem. Mesmo diante de todas essas mudanças, a comunidade olímpica
mantém o seu interesse e expectativa pela continuidade da Eureka!, que desde sua origem
sempre se mostrou como um importante canal de comunicação e aprendizado para toda
a comunidade olímpica, especialmente a brasileira. Nesta edição estamos retomando a
publicação de artigos trazendo temas de interesse da comunidade olímpica e também
algumas outras seções de enorme aceitação em épocas anteriores, como Olimpíadas ao
redor do mundo, onde levamos ao leitor a conhecer um pouco de belos problemas que
apareceram em competições matemáticas pelo mundo afora. Acreditamos que dessa
forma alguns estudantes (especialmente os menos experientes) possam conhecer um pouco
de outras competições matemáticas e sentir-se estimulados em bucar mais sobre elas por
conta própria. Além disso, abrimos a presente edição com os enunciados dos problemas
propostos nas últimas oito edições da IMO-International Mathematical Olympiad (de
2016 a 2023) e os resultados alcançados pelas equipes brasileiras.

Esperamos que a comunidade olímpica sinta-se estimulada e continue, com o entusi-
asmo de sempre, contribuindo para a manutenção desse importante canal de comunicação
que é a nossa revista Eureka! Problemas, soluções, sugestões, artigos são muito bem
vindos. Para enviá-los basta seguir as instruções publicadas em nosso endereço eletrônico
https://www.obm.org.br/ ou escrever para contato@associacaodaobm.org

O presente número da Eureka! foi editado pelos professores Carlos Alexandre Gomes
da Silva - UFRN, Carlos Gustavo Tamm de Araújo Moreira - IMPA-RJ, Fábio Enrique
Brochero Martinez - UFMG. Não podemos deixar de registrar aqui o enorme esforço
de todos os membros da Comissão nacional de Olimpíadas de Matemática e de muitos
ex-olímpicos que continuam com o mesmo entusiasmo de sempre, sem os quais essa
publicação não poderia se tornar realidade. Agradecemos especialmente ao professor
Carlos Augusto David Ribeiro (UFDPar), pelo importante trabalho de revisão desta
edição.

Saudações Olímpicas!
Os editores.



57th IMO - Olimpíada Internacional de Matemática - 2016

Vamos abrir esta edição da Eureka! trazendo os enunciados do problemas propostos
nas últimas 8 edições da IMO - Olimpíada internacional de Matemática, e os resultados
das equipes brasileiras no período de 2016 a 2023. As soluções dos problemas podem ser
encontradas em diversos sites, como por exemplo,

https:
//artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions

Enunciados - IMO 2016 - Hong Kong.

PRIMEIRO DIA

Problema 1. O triângulo BCF é retângulo em B. Seja A o ponto da reta CF tal que
FA = FB e que F esteja entre A e C. Escolhe-se o ponto D de modo que DA = DC e que
AC seja a bissetriz do ângulo ∠DAB. Escolhe-se o ponto E de modo que EA = ED e que
AD seja a bissetriz do ângulo ∠EAC. Seja M o ponto médio de CF. Seja X o ponto tal
que AMXE seja um paralelogramo (com AM∥EX e AE∥MX). Demonstre que as retas
BD, FX e ME são concorrentes.

Problema 2. Determine todos os inteiros positivos n tais que pode-se preencher cada
casa de um tabuleiro n × n com uma das letras I,M e O de tal forma que ambas as
condições seguintes sejam satisfeitas:

• em cada linha e em cada coluna, exatamente um terço das casas tenha um I, um
terço tenha um M e um terço tenha um O;

• em cada diagonal formada por um número de casas que seja múltiplo de 3, exata-
mente um terço das casas tenha um I, um terço tenha um M e um terço tenha um
O.

Observação 1. As linhas e as colunas de um tabuleiro n × n são numeradas de 1 a
n. Assim, cada casa corresponde a um par de inteiros positivos (i, j) com 1 ⩽ i, j ⩽ n.
Para n > 1, o tabuleiro tem 4n− 2 diagonais de dois tipos. Uma diagonal do primeiro
tipo é formada por todas as casas (i, j) para as quais i+ j é igual a uma constante. Uma
diagonal do segundo tipo é formada por todas as casas (i, j) para as quais i− j é igual a
uma constante.

Problema 3. Seja P = A1A2 . . . Ak um polígono convexo no plano. Os vértices
A1, A2, . . . , Ak têm coordenadas inteiras e pertencem a uma circunferência. Seja S
a área de P. Seja n um inteiro positivo ímpar tal que os quadrados dos comprimentos
dos lados de P sejam todos números inteiros divisíveis por n. Demonstre que 2S é um
inteiro divisível por n.

https://artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions
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SEGUNDO DIA

Problema 4. Um conjunto de números inteiros positivos é chamado fragante se contém
pelo menos dois elementos e cada um de seus elementos tem algum fator primo em
comum com pelo menos um dos elementos restantes. Seja P(n) = n2 +n+ 1. Determine
o menor número inteiro positivo b para o qual exista algum número inteiro não negativo
a tal que o conjunto

{P(a+ 1), P(a+ 2), . . . , P(a+ b)}

seja fragante.

Problema 5. No quadro está escrita a equação

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

que tem 2016 fatores lineares de cada lado. Determine o menor valor possível de k
para o qual é possível apagar exatamente k destes 4032 fatores lineares, de modo que
fique pelo menos um fator de cada lado e que a equação resultante não admita nenhuma
solução real.

Problema 6. Há n ⩾ 2 segmentos no plano tais que cada par de segmentos se intersecta
num ponto interior a ambos e não há três segmentos que tenham um ponto em comum.
Geoff deve escolher um dos extremos de cada segmento e colocar sobre ele um sapo, virado
para o outro extremo. Depois ele baterá palmas n− 1 vezes. Cada vez que ele bater as
mãos, cada sapo saltará imediatamente para a frente até o próximo ponto de interseção
sobre o seu segmento. Os sapos nunca mudam a direção dos seus saltos. Geoff deseja
colocar os sapos de tal forma que dois sapos nunca ocupem ao mesmo tempo o mesmo
ponto de interseção.

(a) Prove que se n é ímpar, Geoff sempre tem uma maneira de realizar o seu desejo.
(b) Prove que se n é par, Geoff nunca realiza o seu desejo.
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Resultado da equipe brasileira - IMO - 2016

Líder: Nicolau C. Saldanha.
Vice-líder: Samuel Barbosa Feitosa.

Nome Cidade - Estado Premiação
João César Campos Vargas São Paulo-SP Prata
Andrey Jhen Shan Chen Valinhos-SP Prata
Daniel Lima Braga Eusébio-CE Prata
Pedro Henrique S. de Oliveira São Paulo-SP Prata
Gabriel Toneatti Vercelli Osasco-SP Prata
George Lucas Diniz Alencar Fortaleza-CE Bronze



58th IMO - Olimpíada Internacional de Matemática - 2017

Enunciados - IMO 2017 - Rio de Janeiro, Brasil.

PRIMEIRO DIA

Problema 1. Para cada inteiro a0 > 1, define-se a sequência a0, a1, a2, . . . tal que,
para cada n ≥ 0:

an+1 =

{√
an, se √

an é inteiro,
an + 3, caso contrário.

Determine todos os valores de a0 para os quais existe um número A tal que an = A para
infinitos valores de n.

Problema 2. Seja R o conjunto dos números reais. Determine todas as funções f : R→ R
tais que, para quaisquer números reais x e y,

f(f(x)f(y)) + f(x+ y) = f(xy).

Problema 3. Um coelho invisível e um caçador jogam da seguinte forma no plano
euclidiano. O ponto de partida A0 do coelho e o ponto de partida B0 do caçador são
iguais. Depois de n− 1 rodadas do jogo, o coelho encontra-se no ponto An−1 e o caçador
encontra-se no ponto Bn−1. Na n-ésima rodada do jogo, ocorrem três coisas na seguinte
ordem:

(i) O coelho move-se de forma invisível para um ponto An tal que a distância entre
An−1 e An é exatamente 1.

(ii) Um aparelho de localização informa um ponto Pn ao caçador. A única informação
garantida pelo aparelho ao caçador é que a distância entre Pn e An é menor ou
igual a 1.

(iii) O caçador move-se de forma visível para um ponto Bn tal que a distância entre
Bn−1 e Bn é exatamente 1.

É sempre possível que, qualquer que seja a maneira em que se mova o coelho e
quaisquer que sejam os pontos informados pelo aparelho de localização, o caçador possa
escolher os seus movimentos de modo que depois de 109 rodadas o caçador possa garantir
que a distância entre ele e o coelho seja menor ou igual que 100?
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SEGUNDO DIA

Problema 4. Sejam R e S pontos distintos sobre a circunferência Ω tais que RS não é
um diâmetro de Ω. Seja ℓ a reta tangente a Ω em R. O ponto T é tal que S é o ponto
médio do segmento RT . O ponto J escolhe-se no menor arco RS de Ω de maneira que Γ ,
a circunferência circunscrita ao triângulo JST , interseta ℓ em dois pontos distintos. Seja
A o ponto comum de Γ e ℓ mais próximo de R. A reta AJ interseta pela segunda vez Ω
em K. Demonstre que a reta KT é tangente a Γ .

Problema 5. Seja N ≥ 2 um inteiro dado. Um conjunto de N(N + 1) jogadores de
futebol, todos de diferentes alturas, colocam-se em fila. O treinador deseja retirar N(N−1)
jogadores desta fila, de modo que a fila que sobra formada pelos 2N jogadores restantes
satisfaça as N condições seguintes:

(1) Não resta ninguém entre os dois jogadores mais altos.

(2) Não resta ninguém entre o terceiro jogador mais alto e o quarto jogador mais alto.
...

(N) Não resta ninguém entre os dois jogadores mais baixos.

Demonstre que isto é sempre possível.

Problema 6. Um par ordenado (x, y) de inteiros é um ponto primitivo se o máximo
divisor comum entre x e y é 1. Dado um conjunto finito S de pontos primitivos, demonstre
que existem um inteiro positivo n e inteiros a0, a1, . . . , an tais que, para cada (x, y) de
S, se verifica:

a0x
n + a1x

n−1y+ a2x
n−2y2 + . . .+ an−1xy

n−1 + any
n = 1.
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Resultado da equipe brasileira - IMO - 2017

Líder: Krerley Irraciel Martins Oliveira.
Vice-líder: Frederico Vale Girão.

Nome Cidade - Estado Premiação
João César Campos Vargas Passa Tempo-MG Prata
Davi Cavalcanti Sena Fortaleza-CE Prata
George Lucas Diniz Alencar Fortaleza-CE Bronze
André Yuji Hisatsuga Belo São Paulo-SP Menção honrosa
Bruno Brasil Meinhart Fortaleza-CE Menção honrosa
Pedro Henrique S. de Oliveira São Paulo-SP Menção honrosa



59th IMO - Olimpíada Internacional de Matemática - 2018

Enunciados - IMO 2018 - Cluj-Napoca, Romênia.

PRIMEIRO DIA

Problema 1. Seja Γ o circuncírculo do triângulo acutângulo ABC. Os pontos D e
E estão sobre os segmentos AB e AC, respectivamente, de modo que AD = AE. As
mediatrizes de BD e CE intersectam os arcos menores AB e AC de Γ nos pontos F e G,
respectivamente. Prove que as retas DE e FG são paralelas (ou são a mesma reta).

Problema 2. Determine todos os inteiros n ≥ 3 para os quais existem números reais
a1, a2, . . . , an+2, tais que an+1 = a1, an+2 = a2 e

aiai+1 + 1 = ai+2

para i = 1, 2, . . . , n.

Problema 3. Um triângulo anti-Pascal é uma disposição de números em forma de
triângulo equilátero tal que, exceto para os números na última linha, cada número é o
módulo da diferença entre os dois números imediatamente abaixo dele. Por exemplo, a
seguinte disposição de números é um triângulo anti-Pascal com quatro linhas que contém
todos os inteiros de 1 até 10.

4
2 6

5 7 1
8 3 10 9

Determine se existe um triângulo anti-Pascal com 2018 linhas que contenha todos os
inteiros de 1 até 1+ 2+ · · · + 2018.

SEGUNDO DIA

Problema 4. Um local é um ponto (x, y) no plano tal que x e y são ambos inteiros
positivos menores ou iguais a 20.

Inicialmente, cada um dos 400 locais está vazio. Ana e Beto colocam pedras al-
ternadamente com Ana a iniciar. Na sua vez, Ana coloca uma nova pedra vermelha
num local vazio tal que a distância entre quaisquer dois locais ocupados por pedras
vermelhas seja diferente de

√
5. Na sua vez, Beto coloca uma nova pedra azul em qual-

quer local vazio. (Um local ocupado por uma pedra azul pode estar a qualquer distância
de outro local ocupado.) Eles param quando um dos jogadores não pode colocar uma pedra.

Determine o maior K tal que Ana pode garantir que ela coloca pelo menos K pedras
vermelhas, não importando como Beto coloca suas pedras azuis.
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Problema 5. Sejam a1, a2, . . . uma sequência infinita de inteiros positivos. Suponha
que existe um inteiro N > 1 tal que, para cada n ≥ N, o número

a1

a2
+

a2

a3
+ · · · + an−1

an
+

an

a1

é um inteiro. Prove que existe um inteiro positivo M tal que am = am+1 para todo
m ≥ M.

Problema 6. Um quadrilátero convexo ABCD satisfaz AB · CD = BC · DA. O ponto X
está no interior de ABCD de modo que

∠XAB = ∠XCD e ∠XBC = ∠XDA.

Prove que ∠BXA+ ∠DXC = 180◦.

Resultado da equipe brasileira - IMO - 2018

Líder: Régis Prado Barbosa.
Vice-líder: José Armando Barbosa Filho.

Nome Cidade - Estado Premiação
Pedro Lucas Lanaro Sponchiado Sâo Paulo-SP Ouro
Bruno Brasil Meinhart Fortaleza-CE Bronze
Pedro Gomes Cabral Recife-PE Bronze
Bernardo Peruzzo Trevizan São Paulo-SP Bronze
André Yuji Hisatsuga São Paulo-SP Bronze
Lucas Hiroshi H. Harada São Paulo-SP Menção honrosa
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Enunciados - IMO 2019 - Bath, Reino Unido.

PRIMEIRO DIA

Problema 1. Seja Z o conjunto dos números inteiros. Determine todas as funções
f : Z→ Z tais que, para quaisquer inteiros a e b,

f(2a) + 2f(b) = f(f(a+ b)).

Problema 2. No triângulo ABC, o ponto A1 está no lado BC e o ponto B1 está no
lado AC. Sejam P e Q pontos nos segmentos AA1 e BB1, respectivamente, tal que PQ é
paralelo a AB. Seja P1 um ponto na reta PB1, tal que B1 está estritamente entre P e
P1 e ∠PP1C = ∠BAC. Analogamente, seja Q1 um ponto na reta QA1, tal que A1 está
estritamente entre Q e Q1 e ∠CQ1Q = ∠CBA.

Prove que os pontos P,Q, P1 e Q1 são concíclicos.

Problema 3. Uma rede social possui 2019 usuários, alguns deles são amigos. Sempre
que o usuário A é amigo do usuário B, o usuário B também é amigo do usuário A.
Eventos do seguinte tipo podem acontecer repetidamente, um de cada vez:

Três usuários A,B e C tais que A é amigo de B e A é amigo de C, mas B e C não
são amigos, mudam seus estados de amizade de modo que B e C agora são amigos, mas
A deixa de ser amigo de B e A deixa de ser amigo de C. Todos os outros estados de
amizade não são alterados.

Inicialmente, 1010 usuários possuem exatamente 1009 amigos cada e 1009 usuários
possuem exatamente 1010 amigos cada. Prove que existe uma sequência de tais eventos
tal que, após essa sequência, cada usuário é amigo de no máximo um outro usuário.

SEGUNDO DIA

Problema 4. Encontre todos os pares (k, n) de inteiros positivos tais que

k! = (2n − 1) (2n − 2) (2n − 4) · · ·
(
2n − 2n−1

)
Problema 5. O Banco de Bath emite moedas com um H num lado e um T no outro.
Harry possui n dessas moedas colocadas em linha, ordenadas da esquerda para a direita.
Ele repetidamente realiza a seguinte operação: se há exatamente k > 0 moedas mostrando
H, então ele vira a k-ésima moeda contada da esquerda para a direita; caso contrário,
todas as moedas mostram T e ele para. Por exemplo, se n = 3 o processo começando com
a configuração THT é THT → HHT → HTT → TTT , que acaba depois de três operações.
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(a) Mostre que, para qualquer configuração inicial, Harry para após um número finito
de operações.

(b) Para cada configuração inicial C, seja L(C) o número de operações antes de Harry
parar. Por exemplo, L(THT) = 3 e L(TTT) = 0. Determine a média de L(C) sobre
todas as 2n possíveis configurações iniciais C.

Problema 6. Seja I o incentro do triângulo acutângulo ABC com AB ̸= AC. A
circunferência inscrita (incírculo) ω de ABC é tangente aos lados BC,CA e ABnos
pontos D,E e F, respectivamente. A reta que passa por D perpendicular a EF intersecta
ω novamente em R. A reta AR intersecta ω novamente em P. As circunferências
circunscritas (circuncírculos) dos triângulos PCE e PBF se intersectam novamente no
ponto Q.

Prove que as retas DI e PQ se intersectam sobre a reta que passa por A perpendicular
a AI.

Resultado da equipe brasileira - IMO - 2019

Líder: Edmilson Motta.
Vice-líder: Carlos Yuzo Shine.

Nome Cidade - Estado Premiação
Samuel Prieto Lima Fortaleza-CE Prata
Pedro Gomes Cabral Fortaleza-CE Prata
Bernardo Peruzzo Trevizan São Paulo-SP Bronze
Pedro Lucas Lanaro Sponchiado São Paulo-SP Bronze
Guilherme Zeus Dantas e Moura Maricá-RJ Bronze
Felipe Chen Wu Rio de Janeiro-RJ Bronze
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Enunciados - IMO 2020 - São Petersburgo, Rússia.

PRIMEIRO DIA

Problema 1. Considere o quadrilátero convexo ABCD. O ponto P está no interior de
ABCD. Verificam-se as seguintes igualdades entre razões:

∠PAD : ∠PBA : ∠DPA = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BPC.

Prove que as três seguintes retas se intersetam num ponto: as bissetrizes internas
dos ângulos ∠ADP e ∠PCB e a mediatriz do segmento AB.

Problema 2. Problema 2. Os números reais a, b, c, d são tais que a ≥ b ≥ c ≥ d > 0 e
a+ b+ c+ d = 1. Prove que

(a+ 2b+ 3c+ 4d)aabbccdd < 1.

Problema 3. Temos 4n pedras com pesos 1, 2, 3, . . . , 4n. Cada pedra está colorida com
uma de n cores e há quatro pedras de cada cor. Mostre que podemos organizar as pedras
em dois grupos de modo que as seguintes condições são ambas satisfeitas:

• Os pesos totais dos dois grupos são iguais.

• Cada grupo contém duas pedras de cada cor.

SEGUNDO DIA

Problema 4. Seja n > 1 um inteiro. Na encosta de uma montanha existem n2 estações,
todas com diferentes altitudes. Duas companhias de teleféricos, A e B, operam k teleféricos
cada uma. Cada teleférico faz a viagem de uma estação para uma de maior altitude
(sem paragens intermédias). Os k teleféricos de A partem de k estações diferentes e
terminam em k estações diferentes; além disso, se um teleférico parte de uma estação de
maior altitude do que a de partida de outro, também termina numa estação de maior
altitude do que a de chegada desse outro. A companhia B satisfaz as mesmas condições.
Dizemos que duas estações estão ligadas por uma companhia se podemos começar na
estação com menor altitude e chegar à de maior altitude usando um ou mais teleféricos
dessa companhia (não são permitidos quaisquer outros movimentos entre estações).
Determine o menor inteiro positivo k que garante que existam duas estações ligadas por
ambas as companhias.
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Problema 5. Temos um baralho de n > 1 cartas, com um inteiro positivo escrito em
cada carta. O baralho tem a propriedade de que a média aritmética dos números escritos
em cada par de cartas é também a média geométrica dos números escritos nalguma
coleção de uma ou mais cartas.
Para que valores de n podemos concluir que os números escritos nas cartas são todos
iguais?

Problema 6. Prove que existe uma constante positiva c para a qual a seguinte afirmação
é verdadeira:

Considere um inteiro n > 1, e um conjunto S de n pontos no plano tal que a distância
entre quaisquer dois pontos diferentes de S é pelo menos 1. Então existe uma reta ℓ que
separa S tal que a distância de qualquer ponto de S a ℓ é pelo menos cn−1/3.

(Uma reta ℓ separa um conjunto de pontos S se existe algum segmento com extremos
em dois pontos de S que interseta ℓ.)

Nota. A resultados mais fracos obtidos substituindo cn−1/3 por cn−α podem ser
atribuídos pontos dependendo do valor da constante α > 1/3.

Resultado da equipe brasileira - IMO - 2020

Líder: Carlos Gustavo Tamm de Araújo Moreira.
Vice-líder: Matheus Secco Torres da Silva.

Nome Cidade - Estado Premiação
Pedro Gomes Cabral Fortaleza-CE Ouro
Bernardo Peruzzo Trevizan Sâo Paulo-SP Prata
Guilherme Zeus Dantas e Moura Maricá-RJ Prata
Francisco Moreira M. Neto Fortaleza-CE Prata
Gabriel Ribeiro Paiva Fortaleza-CE Prata
Pablo Andrade Carvalho Barros Teresina-PI Prata
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Enunciados - IMO 2021 - São Petersburgo, Rússia.

PRIMEIRO DIA

Problema 1. Seja n ⩾ 100 um inteiro. O Ivan escreve cada um dos números n,n +
1, . . . , 2n numa carta diferente. Depois de baralhar estas n+ 1 cartas, divide-as em dois
montes. Prove que pelo menos um desses montes contém duas cartas tais que a soma
dos seus números é um quadrado perfeito.

Problema 2. Mostre que a desigualdade
n∑

i=1

n∑
j=1

√
|xi − xj| ⩽

n∑
i=1

n∑
j=1

√
|xi + xj|

é satisfeita por todos os números reais x1, . . . , xn.

Problema 3. Seja D um ponto interior de um triângulo acutângulo ABC, com AB > AC,
tal que ∠DAB = ∠CAD. O ponto E, no segmento AC, satisfaz ∠ADE = ∠BCD; o ponto
F, no segmento AB, satisfaz ∠FDA = ∠DBC e o ponto X, na reta AC, satisfaz CX = BX.
Sejam O1 e O2 os circuncentros dos triângulos ADC e EXD, respetivamente. Prove que
as retas BC, EF e O1O2 são concorrentes.

SEGUNDO DIA

Problema 4. Sejam Γ uma circunferência com centro I e ABCD um quadrilátero
convexo tal que cada um dos segmentos AB,BC,CD e DA é tangente a Γ . Seja Ω a
circunferência circunscrita do triângulo AIC. O prolongamento de BA para além de
A interseta Ω em X, e o prolongamento de BC para além de C interseta Ω em Z. Os
prolongamentos de AD e CD para além de D intersetam Ω em Y e T , respetivamente.
Prove que

AD+DT + TX+ XA = CD+DY + YZ+ ZC

Problema 5. Dois esquilos, Bushy e Jumpy, recolheram 2021 nozes para o inverno. O
Jumpy numera as nozes desde 1 até 2021 e escava 2021 pequenos buracos no chão numa
disposição circular à volta da sua árvore favorita. Na manhã seguinte, o Jumpy observa
que o Bushy colocou uma noz em cada buraco, mas sem ter em conta a numeração. Não
contente com isto, o Jumpy decide reordenar as nozes realizando uma sequência de 2021
movimentos. No k-ésimo movimento o Jumpy troca as posições das duas nozes adjacentes
à noz com o número k. Prove que existe um valor de k tal que, no k-ésimo movimento,
as nozes trocadas têm números a e b tais que a < k < b.
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Problema 6. Sejam m ⩾ 2 um inteiro, A um conjunto finito de inteiros (não necessa-
riamente positivos) e B1, B2, B3, . . . , Bm subconjuntos de A. Suponhamos que, para cada
k = 1, 2, . . . ,m, a soma dos elementos de Bk é mk. Prove que A contém pelo menos
m/2 elementos.

Resultado da equipe brasileira - IMO - 2021

Líder: Edmilson Motta.
Vice-líder: Davi Lopes Alves de Medeiros.

Nome Cidade - Estado Premiação
Marcelo Machado Lage Belo Horizonte-MG Prata
Olavo Paschoal Longo Sâo Paulo-SP Prata
Gabriel Ribeiro Paiva Fortaleza-CE Bronze
Pablo Andrade Carvalho Barros Teresina-PI Bronze
Gustavo Neves da Cruz Belo Horizonte-MG Bronze
Pedro de Oliveira L. Lack Nova Friburgo-RJ Menção honrosa
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Enunciados - IMO 2022 - Oslo, Noruega

PRIMEIRO DIA

Problema 1. O Banco de Oslo emite dois tipos de moedas: moedas de alumínio
(denotadas por A ) e moedas de bronze (denotadas por B ). Marianne tem n moedas de
alumínio e n moedas de bronze, dispostas numa linha em alguma ordem inicial arbitrária.
Um bloco é qualquer subsequência de moedas consecutivas do mesmo tipo. Dado um
inteiro positivo fixo k ⩽ 2n, Marianne realiza repetidamente a seguinte operação: ela
identifica o bloco mais longo contendo a k-ésima moeda da esquerda para a direita, e
move todas as moedas desse bloco para o extremo esquerdo da linha. Por exemplo, se
n = 4 e k = 4, o processo começando com a seguinte ordem AABBBABA seria

AABBBABA→ BBBAAABA→ AAABBBBA→
→ BBBBAAAA→ BBBBAAAA→ · · · .

Encontre todos os pares (n, k) com 1 ⩽ k ⩽ 2n tais que, para qualquer ordem inicial,
em algum momento durante o processo, as n moedas mais à esquerda serão todas do
mesmo tipo.

Problema 2. Seja R+o conjunto dos números reais positivos. Encontre todas as funções
f : R+ → R+tais que para cada x ∈ R+, existe exatamente um y ∈ R+satisfazendo

xf(y) + yf(x) ⩽ 2.

Problema 3. Seja k um inteiro positivo e seja S um conjunto finito de números primos
ímpares. Prove que existe no máximo uma forma (a menos de rotação e reflexão) de
colocar os elementos de S ao redor de uma circunferência de modo que o produto de
quaisquer dois vizinhos é da forma x2 + x+ k para algum inteiro positivo x.

SEGUNDO DIA

Problema 4. Seja ABCDE um pentágono convexo tal que BC = DE. Suponha que
existe um ponto T no interior de ABCDE com TB = TD, TC = TE e ∠ABT = ∠TEA. A
reta AB intersecta as retas CD e CT nos pontos P e Q, respetivamente. Suponha que os
pontos P, B,A e Q aparecem na reta nesta ordem. A reta AE intersecta as retas CD e
DT nos pontos R e S, respectivamente. Suponha que os pontos R, E,A e S aparecem na
reta nesta ordem. Prove que os pontos P, S,Q e R estão sobre uma circunferência.
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Problema 5. Encontre todas as triplas (a, b, p) de inteiros positivos tais que p é primo
e

ap = b! + p

Problema 6. Seja n um inteiro positivo. Um quadrado Nórdico é um tabuleiro n × n
contendo todos os inteiros de 1 até n2 de modo que cada quadradinho contém exatamente
um número. Dois quadradinhos diferentes são considerados adjacentes se eles têm um
lado em comum. Um quadradinho que é adjacente apenas a quadradinhos com números
maiores é chamado de um vale. Um caminho crescente é uma sequência de um ou mais
quadradinhos tais que:

(i) o primeiro quadradinho da sequência é um vale,

(ii) cada quadradinho a partir do segundo é adjacente ao quadradinho anterior,

(ii) os números contidos nos quadradinhos da sequência estão em ordem crescente.

Encontre, em função de n, a menor quantidade possível de caminhos crescentes de
um quadrado Nórdico.

Resultado da equipe brasileira - IMO - 2022

Líder: Regis Prado Barbosa.
Vice-líder: Rafael Kazuhiro Miyazaki.

Nome Cidade - Estado Premiação
Olavo Paschoal Longo São Paulo-SP Ouro
Marcelo Machado Lage Belo Horizonte-MG Ouro
Rodrigo Salgado Domingos Porto Rio de Janeiro-RJ Prata
Eduardo Henrique R. do Nascimento São Paulo-SP Bronze
Gabriel C. V Torkomian São Carlos-SP Bronze
Joao Pedro R. V. Costa Fortaleza-CE Menção honrosa
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Enunciados - IMO 2023 - Chiba, Japão.

PRIMEIRO DIA

Problema 1. Determine todos os números inteiros n > 1 compostos que satisfazem
a seguinte propriedade: se d1, d2, . . . , dk são todos os divisores positivos de n com
1 = d1 < d2 < · · · < dk = n, então di divide di+1 + di+2 para todo 1 ⩽ i ⩽ k− 2.
Problema 2. Seja ABC um triângulo acutângulo com AB < AC. Seja Ω o circuncírculo
de ABC. Seja S o ponto médio do arco CB de Ω contendo A. A reta perpendicular a BC
que passa por A intersecta o segmento BS em D e intersecta Ω novamente em E ̸= A. A
reta paralela a BC que passa por D intersecta a reta BE em L. Denote o circuncírculo do
triângulo BDL por ω. A circunferência ω intersecta Ω novamente em P ̸= B.
Prove que a reta tangente a ω em P intersecta a reta BS num ponto sobre a bissetriz
interna de ∠BAC.
Problema 3. Para cada inteiro k ⩾ 2, determine todas as sequências infinitas de
inteiros positivos a1, a2, . . . para as quais existe um polinómio P da forma P(x) =
xk + ck−1x

k−1 + · · · + c1x+ c0, em que c0, c1, . . . , ck−1 são inteiros não negativos, tal
que

P (an) = an+1an+2 · · ·an+k

para todo inteiro n ⩾ 1.

SEGUNDO DIA

Problema 4. Sejam x1, x2, . . . , x2023 números reais positivos, distintos dois a dois, tais
que

an =

√
(x1 + x2 + · · · + xn)

(
1

x1
+

1

x2
+ · · · + 1

xn

)
é um inteiro para todo n = 1, 2, . . . , 2023. Prove que a2023 ⩾ 3034.
Problema 5. Seja n um inteiro positivo. Um triângulo japonês consiste em 1+2+· · ·+n
círculos iguais formando um triângulo equilátero tal que para cada i = 1, 2, . . . , n, a i-
ésima linha contém exatamente i círculos, com exatamente um deles pintado de vermelho.
Um caminho ninja num triângulo japonês é uma sequência de n círculos começando
com o círculo da primeira linha e indo sucessivamente de um círculo para um dos dois
círculos imediatamente abaixo dele e terminando na última linha. Na figura seguinte há
um exemplo de um triângulo japonês com n = 6, no qual há um caminho ninja contendo
dois círculos vermelhos.
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Em função de n, encontre o maior k tal que em qualquer triângulo japonês existe um
caminho ninja contendo pelo menos k círculos vermelhos.

Problema 6. Seja ABC um triângulo equilátero. Sejam A1, B1, C1 pontos no interior
de ABC tais que BA1 = A1C,CB1 = B1A,AC1 = C1B e

∠BA1C+ ∠CB1A+ ∠AC1B = 480◦.

As retas BC1 e CB1 se intersectam em A2, as retas CA1 e AC1 se intersectam em
B2 e as retas AB1 e BA1 se intersectam em C2.
Prove que, se o triângulo A1B1C1 é escaleno, então os três circuncírculos dos triângulos
AA1A2, BB1B2 e CC1C2 possuem dois pontos em comum.

Nota: um triângulo escaleno é um triângulo que não possui dois lados com a mesma
medida.
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Resultado da equipe brasileira - IMO - 2023

Líder: Edmilson Motta.
Vice-líder: Samuel Barbosa Feitosa.

Nome Cidade - Estado Premiação
Matheus Alencar de Moraes Fortaleza-CE Ouro
Rodrigo Salgado D. Porto Rio de Janeiro-RJ Prata
Leonardo Henrique F. Maldonado Sorocaba-SP Prata
Luís Felipe Pestana Giglio Niterói-RJ Bronze
Eduardo Henrique R. do Nascimento Goiânia-GO Bronze
Felipe Makoto Shimamura Silva São Paulo-SP Bronze



Artigo: Permutações Caóticas Generalizadas

• Nível Avançado
Iesus C. Diniz, Bruno S. Góis e Juan R. Cruz

UFRN - Natal/RN

Introdução

Um problema já bem conhecido em combinatória é o do número permutações caóticas
de um conjunto A = {a1, . . . , an} de n elementos, comumente representado por Dn

ou !n. Este problema foi proposto primeiramente por Pierre Raymond de Montmort ,
[1] em 1708, e resolvido pelo próprio em 1713. Nicholas Bernoulli também o resolveu,
aproximadamente no mesmo período, usando o princípio da inclusão e exclusão.

Uma permutação caótica dos elementos do conjunto A = {a1, . . . , an} é o conjunto
das permutações dos elementos de A nas quais nenhum deles aparece em sua posição
inicial, ou de maneira mais formal, o conjunto das funções bijetivas f : A → A tais
que f(ai) ̸= ai para todo i ∈ {1, . . . , n}. Sendo Cn o conjunto de todas as permutações
caóticas que Dn = #Cn (a cardinalidade de Cn), em [2] é dada uma expressão para o
cálculo de Dn, ademais é mostrado que Dn é o inteiro mais próximo de n!

e
.

Dn = n!

n∑
j=0

(−1)j

j!
e Dn =

⌊
n!

e

⌉
(1)

Exemplo 1. Sejam In := {1, . . . , n} o conjunto dos n primeiros inteiros positivos e Cn

de todas as permutações caóticas de In. Determine C4 e D4.

Solução. Seja I4 = {1, 2, 3, 4}, tem-se portanto que

C4 = { (2, 1, 4, 3) , (2, 4, 1, 3) , (2, 3, 4, 1) , (3, 1, 4, 2) , (3, 4, 1, 2) , (3, 4, 2, 1) ,

(4, 3, 2, 1) , (4, 3, 1, 2) , (4, 1, 2, 3)} e D4 = 9.

Exemplo 2. Um técnico de futsal dispõe de um elenco de 8 jogadores de linha: 2 laterais
esquerdo, 2 laterais direito, 2 fixos, 2 pivôs além de 2 goleiros. De quantos modos o
técnico pode escalar o time, se apenas o goleiro puder jogar em sua posição natural?

Solução. Há
(
2
1

)(
2
1

)(
2
1

)(
2
1

)(
2
1

)
= 25 maneiras de se escolher os 4 jogadores de linha e

o goleiro que serão titulares, para cada uma destas escolhas, há uma possibilidade de
escalação do goleiro e D4 possibilidades para os jogadores de linha. Assim, segue-se pelo
princípio fundamental da contagem que há 25 × 1× 9 possibilidades de escalação do time.
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Neste artigo generalizaremos o cálculo do número de permutações caóticas Dn obtidos
entre dois conjuntos de mesmos elementos para dois conjuntos quaisquer. Denotaremos
por Dk

n o número de permutações caóticas entre dois conjuntos A e A∗ de n elementos
dos quais k deles são não comuns aos dois conjuntos, isto é, |A ∩ A∗| = n− k, para todo
k ∈ {1, . . . , n}. Existem duas soluções para este caso. A primeira delas será demonstrada
por indução a partir de uma recorrência, enquanto a segunda será determinada por um
argumento combinatório.

Teorema 1. Sejam A e A∗ dois conjuntos tais que |A ∩ A∗| = n− k e |A| = |A∗| = n,
então para todo k ∈ {0, . . . , n}

Dk
n =

k∑
j=0

(
k

j

)
Dn−j. (2)

1. O valor de Dn é um caso particular da Eq. 2 com k = 0; pois se k = 0, então
A = A∗ e D0

n é o número de permutações caóticas entre dois conjuntos de mesmos
elementos, ou seja, D0

n = Dn;

2. Se k = n, então os conjuntos A e A∗ não apresentam nenhum elemento em comum,
neste caso Dn

n = n!.

Prova pelo princípio da indução finita

Sejam A e A∗ dois conjuntos tais que |A ∩ A∗| = n− k e |A| = |A∗| = n. Sem perda
de generalidades, consideremos

A = {1, . . . , k, k+ 1, . . . , n} e A∗ = {1∗, . . . , k∗, k+ 1, . . . , n} com

Dk
n o número das permutações caóticas entre os elementos de A e A∗ .

Diferentemente do problema clássico das permutações caóticas, nos quais os dois
conjuntos continham os mesmos elementos, temos agora k elementos não comuns aos
dois conjuntos, e com isso há novas possibilidades de permutações caóticas dos elementos
entre os conjuntos A e A∗.

Para todo i ∈ {1, . . . , k} seja Ai o conjunto das permutações caóticas nas quais o
elemento i∗ de A∗ ocupa a posição i.

O número de permutações caóticas poderá ser calculado a partir do condicionamento
nos elementos não comuns aos dois conjuntos que ocupam ou não as suas posições
naturais. Falando de modo mais específico, se ao menos um elemento i∗ ∈ {1∗, 2∗, . . . , k∗}

ocupa a posição i, A1 ∪ . . . ∪ Ak, ou nenhum elemento i∗ de A∗ estiver em sua posição
natural, (A1 ∪ . . . ∪ Ak)

c. Assim, pelo princípio aditivo tem-se

Dk
n = |(A1 ∪ . . . ∪ Ak)

c|+ |(A1 ∪ . . . ∪ Ak)|

= |Ac
1 ∩ . . . ∩ Ac

k|+ |(A1 ∪ . . . ∪ Ak)|
(3)
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e desde que para todo k ∈ {1, . . . , n}

|Ac
1 ∩ . . . ∩ Ac

k| = Dn (4)

tem-se de (3) e (4) que

Dk
n = Dn + |(A1 ∪ . . . ∪ Ak)| . (5)

Ademais, tem-se que
∀j ∈ {1, . . . , k} com {i1, i2, . . . , ij} ⊂ {1, . . . , k}

|Ai1 ∩ Ai2 ∩ . . . ∩ Aij | = Dk−j
n−j, com D0

n−j = Dn−j .
(6)

Para k = 1, então j = 1 e segue-se de (5) e (6) que

D1
n = |Ac

1|+ |A1| = Dn +Dn−1. (7)

Para k = 2, então de (6) segue-se que para todo i1 ∈ {1, 2}

|Ai1 | = D1
n−1 (k = 2, j = 1) e |A1 ∩ A2| = Dn−2 (k = 2, j = 2) .

Logo de (5) e (7), tem-se

D2
n = Dn + |(A1 ∪ A2)|

= Dn +
∑

1≤i1≤2

|Ai1 |− |Ai1 ∩ Ai2 |

= Dn + 2D1
n−1 +Dn−2

= Dn + 2(Dn−1 +Dn−2) −Dn−2

= Dn + 2Dn−1 +Dn−2 .

(8)

Para k = 3, então de (6) com i1 ∈ {1, 2, 3} e {i1, i2} ⊂ {1, 2, 3}

|Ai1 | = D2
n−1 (j = 1), |Ai1 ∩ Ai2 | = D1

n−2 (j = 2) e |A1 ∩ A2 ∩ A3| = Dn−3 (j = 3) .

Logo de (5), (6), (7) e (8) segue-se que

D3
n = Dn + |(A1 ∪ A2 ∪ A3)|

= Dn +
∑

1≤i1≤3

|Ai1 |−
∑

1≤i1<i2≤3

|Ai1 ∩ Ai2 |+ |A1 ∩ A2 ∩ A3|

= Dn + 3D2
n−1 − 3D1

n−2 +Dn−3

= Dn + 3(Dn−1 + 2Dn−2 +Dn−3) − 3(Dn−2 +Dn−3) +Dn−3

= Dn + 3Dn−1 + 3Dn−2 +Dn−3 .

(9)
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Admitamos como hipótese de indução que para um certo k ∈ N,

Dk
n =

k∑
j=0

(
k

j

)
Dn−j (10)

Lema 1. Para todo k ∈ N,
Dk+1

n = Dk
n +Dk

n−1

Demonstração. Tem-se que Dk+1
n é o total de permutações caóticas entre dois conjuntos

de n-elementos com k+ 1 elementos não comuns a ambos. Para todo j ∈ {1, . . . , k+ 1}
particionando o conjunto das permutações caóticas em relação a qualquer um dos Aj,
A1 por exemplo, tem-se:

Dk+1
n = |Ac

1|+ |A1| = Dk
n +Dk

n−1 (11)

Usando a recorrência (11) e a hipótese de indução dada em (10), segue-se que

Dk+1
n = Dk

n +Dk
n−1

=

k∑
j=0

(
k

j

)
Dn−j +

k∑
j=0

(
k

j

)
Dn−1−j

=

(
k

0

)
Dn+

(
k

1

)
Dn−1 +

(
k

2

)
Dn−2 + . . .+

(
k

k

)
Dn−k+(

k

0

)
Dn−1 +

(
k

1

)
Dn−2 + . . .+

(
k

k− 1

)
Dn−k +

(
k

k

)
Dn−1−k

=

(
k

0

)
Dn +

[(
k

0

)
+

(
k

1

)]
Dn−1 + . . .+

[(
k

k− 1

)
+

(
k

k

)]
Dn−k +

(
k

k

)
Dn−1−k

=

(
k+ 1

0

)
Dn +

(
k+ 1

1

)
Dn−1 + . . .+

(
k+ 1

k

)
Dn−k +

(
k+ 1

k+ 1

)
Dn−(k+1)

=

k+1∑
j=0

(
k+ 1

j

)
Dn−j .
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Prova por um argumento combinatório

Considere o conjunto das permutações caóticas entre os elementos dos conjuntos

A = {1, . . . , k, k+ 1, . . . , n} e A∗ = {1∗, . . . , k∗, k+ 1, . . . , n}

e Ai o conjunto das permutações caóticas nas quais o elemento i∗ de A∗ ocupa a posição
i, para todo i ∈ {1, . . . , k}.

O número de permutações caóticas poderá ser calculado a partir do condicionamento
na quantidade Qj de permutações caóticas nas quais exatamente j ∈ {1, . . . , k} elementos
não comuns a A e A∗ ocupam as suas posições naturais, isto é, na quantidade das
permutações caóticas que pertencem a exatamente j eventos Ai , i ∈ {1, . . . , k}. Assim,
poderemos ter desde que nenhum dos k elementos não comuns aos dois conjuntos A e A∗

ocupem a sua posição natural até no máximo k deles ocuparem as suas posições naturais.
Logo,

Dk
n = Q0 +Q1 + . . .+Qk, em que Qj =

(
k

j

)
Dn−j (12)

onde a última igualdade de (12) segue do fato de que há
(
k
j

)
maneiras de se escolher

exatamente j dos k elementos não comuns aos dois conjuntos ocupando as suas posições
naturais com os demais n− j elementos podendo ser permutados caoticamente por Dn−j.
Segue-se portanto que

Dk
n = Q0 +Q1 + . . .+Qk =

k∑
j=0

(
k

j

)
Dn−j

Exemplo 3. Num congresso matemático n pessoas encontram-se sentadas num auditório
de n+k cadeiras. Elas vão para uma outra sala e quando retornam ao auditório, sentam-
se novamente e é observado que nenhuma delas ocupa a mesma cadeira que antes. Mostre
que o número de maneiras que isto pode ocorrer é Dk

n+k.

Solução. Sem perda de generalidade, suponhamos as cadeiras numeradas de 1 a
n+ k, com as n primeiras sendo previamente ocupadas por pessoas numeradas de 1 a n.
Ademais, considere para todo (i, j) ∈ {1, . . . , n}×{1, . . . , n+ k} a seguinte convenção: (i, j)
representando a cadeira j sendo ocupada pela pessoa i e para l ∈ {(n+ 1)∗, . . . , (n+ k)∗}

(l, j) se a cadeira j estiver vazia. Assim, o número de maneiras da sala ser ocupada
sem as posições iniciais serem repetidas por nenhum dos presentes, é o conjunto das
permutações caóticas entre os conjuntos A∗ = {1, . . . , n, (n+ 1)∗, . . . , (n+ k)∗} e A =
{1, . . . , n, (n+ 1), . . . , (n+ k)}, i.e.,

Dk
n+k =

k∑
j=0

(
k

j

)
Dn+k−j (13)
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Observação 2. O resultado dado em (13) a partir do Teorema 1; é uma generalização
do problema 13, página 173 de [4] para o caso em que k = 1.

Problemas propostos

1. Prove que para todo n ≥ 3,

Dn = (n− 1)(Dn−1 +Dn−2) .

2. Prove usando a recorrência (11) que

Dn =

n∑
j=0

(−1)j

j!
.

3. Prove que

n! =

(
n

0

)
Dn +

(
n

1

)
Dn−1 + . . .+

(
n

n

)
D0 .

4. (MIT-Competition-2014) Determine a quantidade de triplas não ordenadas de
conjuntos (A,B,C) tais que:

(a) A,B,C ⊂ {1, . . . , 8};
(b) |A ∩ B| = |B ∩ C| = |C ∩ A| = 2;
(c) |A| = |B| = |C| = 4.

5. (China National Competition-2001, [3]) Defina a sequência infinita a1, a2, . . . re-
curssivamente como segue: a1 = 0, a2 = 1 e

an =
1

2
nan−1 +

1

2
n(n− 1)an−2 + (−1)n

(
1−

n

2

)
∀n ≥ 3 .

Encontre uma fórmula explícita para

fn = an + 2

(
n

1

)
an−1 + 3

(
n

2

)
an−2 + . . .+

(
n

n− 1

)
a1 .
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Artigo: Transformações Geométricas na OBM

• Nível intermediário
Daniel Ramos Bezerra de Alencar

Picos - PI

Nos últimos anos, a maior parte dos problemas de geometria da OBM do nível 3 tem
sido relacionada a concorrências e colinearidades, que são o ponto forte das transformações
geométricas. No final deste artigo, veremos como essas ferramentas podem ser usadas
para resolver alguns problemas de geometria plana do nível 3, que apareceram nas últimas
versões da OBM. Porém, antes dos problemas, enunciaremos alguns lemas que serão
úteis. A demonstração deles fica como desafio para o leitor e, no final do artigo, são
dadas dicas de como demonstrá-los.

Lema 2. O ponto A, o incentro de ABC, o ponto médio do arco BC do circuncírculo a
ABC que não contém A e o ex-incentro relativo ao lado BC são colineares.

De agora em diante, neste artigo (ABC) denotará o circuncírculo do triângulo ABC.

Definição 1. Dado um triângulo ABC e um ponto P distinto dos vértices A, B e C,
definimos o triângulo pedal de P em relação ao triângulo ABC como o triângulo tal que
seus vértices são os pés das perpendiculares de P aos lados do triângulo.

Um triângulo DEF é chamado de triângulo antipedal de P em relação a ABC se ABC
é o triângulo pedal de P em relação a DEF.

Definição 2. Dado um triângulo ABC, o conjugado isogonal de um ponto T em relação
a ABC é obtido refletindo as retas TA, TB e TC em relacão às bissetrizes internas de
ABC que passam por A,B e C, respectivamente. As retas resultantes são concorrentes
num ponto chamado de conjugado isogonal de T . Essa definição só é válida se T não
pertence aos lados do triângulo.

Lema 3. O triângulo pedal de um ponto P num triângulo ABC e o triângulo antipedal
do conjugado isogonal de P num triângulo ABC são homotéticos.

Lema 4. Sejam ABCD um quadrilátero inscritível e P = AD ∩ BC exterior ao (ABC).
Uma inversão com centro em P e raio igual à raiz quadrada da potência de ponto de P em
relação ao (ABC) fará com que os inversos dos pontos A, B, C e D sejam respectivamente
os pontos D, C, B e A.

Lema 5. As reflexões do ortocentro em relação aos lados do triângulo ABC e aos pontos
médios dos lados do triângulo estão sobre (ABC).



28 Transformações Geométricas na OBM

Lema 6. O ortocentro do triângulo ABC é o incentro de seu triângulo órtico.

Lema 7. Sejam D, E e F os pontos de tangência do incírculo de ABC com os lados
BC, AC e AB. A reta de Euler do triângulo DEF é a reta que contém o incentro e o
circuncentro do triângulo ABC.

Lema 8. Seja D o ponto de interseção das tangentes ao (ABC) por B e C. Então o
segmento AD é uma simediana de ABC, isto é, a reflexão da mediana que passa pelo
vértice A sobre a bissetriz que passa pelo mesmo vértice.

Lema 9. O conjugado isogonal de um ponto P é o circuncentro do triângulo formado
pelas reflexões de P nos lados de ABC.

Ao final, apresentaremos alguns encaminhamentos para demonstrar cada um desses
lemas.

Alguns problemas de geometria na OBM

A seguir enunciaremos com sua respectiva resolução alguns problemas que apareceram
nas provas da terceira fase da Olimpíada Brasileira de Matemática. Em alguns destes
problemas serão usados os lemas enunciados na seção anterior. Ressaltamos que em
outros problemas também serão empregados teoremas clássicos conhecidos, tais como o
Teorema de Brianchon, Teorema de Desargues, etc, que podem ser encontrados facilmente
na Wikipedia ou no livro de Coxeter e Greitzer [5].

Exemplo 4 (OBM 2003, Problema 3). Seja ABCD um losango. Sejam E, F, G e H
pontos sobre os lados AB, BC, CD e DA, respectivamente, e tais que as retas EF e GH
são tangentes à circunferência inscrita no losango. Prove que as retas EH e FG são
paralelas.

Solução. Dado que AB é paralelo a DC, podemos assumir que estas duas retas se cortam
num ponto no infinito que denotaremos por M. De igual forma AD e BC se interesectam
num ponto no infinito que denotaremos por N. Tem-se que as retas EM, GM, HN e
FN (ou suas equivalentes AB, CD, AD e BC) são tangentes à circunferência inscrita no
losango. Então, pelo Teorema de Brianchon aplicado no hexágono EMGHNF, se tem
que EH, MN e FG são concorrentes, isto é, EH ∥ FG.

Uma outra ideia é usar o Teorema de Desargues: Pelo Teorema de Brianchon aplicado
no hexágono circunscritível AEFCGH, se tem que AC, GE e HF são concorrentes num
ponto que denotaremos por P. Como esses segmentos são concorrentes, os triângulos
AHE e CFG estão em perspectiva. Portanto, pelo Teorema de Desargues, segue que os
pontos EH ∩ FG, AH ∩ CF, AE ∩ GC são colineares e, como AH ∥ CF e AE ∥ GC, tem-se
que EH ∥ FG.
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Exemplo 5 (OBM 2005, Problema 5). Sejam ABC um triângulo acutângulo e F o seu
ponto de Fermat, isto é, o ponto interior ao triângulo ABC tal que os três ângulos ∠AFB,
∠BFC e ∠CFA medem 120◦. Para cada um dos triângulos ABF, ACF e BCF, é traçada
a sua reta de Euler, ou seja, a reta que liga o seu circuncentro e o seu baricentro. Prove
que essas três retas concorrem em um ponto.

Solução. Seja M o ponto pertencente ao circuncírculo (BFC) tal que o triângulo BCM
seja equilátero. Como ∠BCM = 60◦, tem-se que ∠BFM = 60◦, pois ambos olham para o
mesmo arco em (BFC). Desta forma, A, F e M são colineares.

Sejam D o ponto médio de BC, Ga o baricentro de BFC, Oa o circuncentro de BFC e
G o baricentro de ABC. Considere uma homotetia de razão 1

3
centrada em D. Ela levará

o ponto A no ponto G, o ponto M no ponto Oa e o ponto F no ponto Ga. Portanto, G,
Oa e Ga são colineares. De forma análoga para os outros lados do triângulo, as retas de
Euler de BFC, CFA e AFB concorrem no ponto G.

B

C

A

M

F

D

Ga

Oa

G
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Exemplo 6 (OBM 2006, Problema 1). Seja ABC um triângulo, P o pé da bissetriz
interna relativa ao lado AC e I seu incentro. Se AP +AB = CB, prove que API é um
triângulo isósceles.

Solução. Sejam AP o prolongamento do segmento AB com tamanho AP e F o pro-
longamento de BP no segmento PC. Como AB + AP = BC, o triângulo PBC isósceles.
Como PBC é isósceles e BP é a bissetriz do ângulo ∠CBP, BF é a altura relativa ao
lado PC. Como PAP é isósceles, então ∠IAP = ∠PPA e, consequentemente, PP ∥ AI.
Disso, tem-se que ∠AGC = ∠PPC e, como P está na mediatriz de PC, tem-se que
∠PCA = ∠PPC = ∠AGC e, consequentemente, o triângulo CAG é isósceles.

A

B

C

P

P ′F

I

N G

M

Seja N um ponto sobre CP ′ e M um ponto sobre BP de tal forma que AN ⊥ P ′C e
AM ∥ P ′C e consequentemente, perpendicular a BP. Como CAG é isósceles, N é o ponto
médio de CG e então, AM, AN, AC e AG formam um feixe harmônico. Incidindo esse
feixe sobre BF, obtém-se que, por AN ser paralelo a BF, M é o ponto médio de IP. Disso,
e do fato de AM ser a altura relativa ao lado IP, tem-se que o triângulo AIP é isósceles.

Exemplo 7 (OBM 2006, Problema 5). Seja Ω um polígono convexo de 2006 lados. As
1003 diagonais ligando vértices opostos e os 1003 segmentos que ligam os pontos médios
dos lados opostos são concorrentes, ou seja, todos os 2006 segmentos possuem um ponto
em comum. Prove que os lados opostos de P são paralelos e congruentes.

Solução. Sejam P1, P2, . . . , P2006 os vértices desse polígono e M1, . . . ,M2006 os pontos
médios dos segmentos P1P2 , P2P3, . . ., P2006P1, respectivamente. Como P1M1

M1P2
=

P1004M1004

M1004P1005
, tem-se que P1P2 ∥ P1004P1005 e, consequentemente, há uma homotetia

centrada em T , ponto comum das diagonais, e de razão −k(k > 0) que leva P1 a P1004,
P2 a P1005 e M1 a M1004. Porém, usando semelhanças equivalentes entre os triângulos
PiPi+1T e Pi+2003Pi+2002T onde i = 2, 3, . . . , 1003, segue que

TP1004

TP1
=

TP1005

TP2
= · · · = TP2006

TP1003
=

TP1

TP1004
= k.

Da primeira e da última fração da igualdade anterior se tem que 1

k
= k. Portanto, k = 1

e os lados opostos do polígono são paralelos e congruentes.
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Exemplo 8 (OBM 2007, Problema 5). Seja ABCD um quadrilátero convexo e sejam P
o ponto de interseção das retas AB e CD, Q o ponto de interseção das retas AD e BC e
O o ponto de interseção das diagonais AC e BD. Prove que se ∠POQ é um ângulo reto,
então PO é bissetriz de ∠AOD e QO é bissetriz de ∠AOB.

Solução. Pela construção do conjugado harmônico, obtém-se que A, B, M, P formam
uma quádrupla harmônica e, como ∠MOP = 90◦, há um círculo de Apolônio que passa
por M, O e P e, consequentemente, OM é bissetriz de ∠AOB. De forma análoga, ON é
bissetriz de ∠AOD.

A

D
C

B

O

Q

P

N

M

Exemplo 9 (OBM 2008, Problema 4). Seja ABCD um quadrilátero cíclico e r e s
as retas simétricas à reta AB em relação às bissetrizes internas dos ângulos ∠CAD e
∠CBD, respectivamente. Sejam P o ponto de interseção de r e s e O o centro do círculo
circunscrito a ABCD. Prove que OP é perpendicular a CD.

Solução. Considere o caso em que r e s não sejam tangentes à circunferência. Sejam E e
F as interseções de r e s, respectivamente, diferentes de A e B. Como ∠EAD = ∠CAB,
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tem-se que BE ∥ CD. Como
∠FBA = 180− ∠DBC− 2 × (∠ABD)

e
∠BDA = 180− ∠ABD− ∠DBC− ∠CAB,

tem-se que
∠BAF = ∠BDA− ∠FBA = ∠ABD− ∠CAB = ∠ABD− ∠EAD = ∠ABE.

Portanto, AF ∥ BE ∥ CD. Dessa forma, a reta polar de P também é paralela a CD e,
consequentemente, OP ⊥ CD.

D

A

B

C

P

E

F

Agora suponhamos que uma das retas r ou s é tangente à circunferência. Podemos
supor, sem perda de generalidade, que a reta r é tangente à circunferência. Pelo fato
de o ângulo entre a tangente e o segmento AD ser igual ao ângulo ∠CAB e também é
igual ao ângulo ∠ABD, tem-se que AB ∥ CD. Além disso, como o ângulo entre a reta s
e o segmento BC é igual ao ângulo ∠ABD, que é igual ao ângulo ∠CAB, tem-se que a
reta s também é tangente à circunferência. Dessa forma, a reta AB é a reta polar de P e,
consequentemente, OP ⊥ CD.

A
B

C
D

P
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Exemplo 10 (OBM 2009, Problema 5). Seja ABC um triângulo e O seu circuncentro.
As retas AB e AC cortam o circuncírculo de OBC novamente em B1 ̸= B e C1 ̸= C,
respectivamente, as retas BA e BC cortam o circuncírculo de OAC em A2 ̸= A e C2 ̸= C,
respectivamente, e as retas CA e CB cortam o circuncírculo de OAB em A3 ̸= A e
B3 ̸= B, respectivamente. Prove que as retas A2A3, B1B3 e C1C2 passam por um mesmo
ponto.

Solução. Considere a inversão com centro em O e raio OA. Como o circuncírculo
(AOC) passa por O, seu inverso é uma reta que passa por A = A e C = C, isto é, a reta
AC é o inverso de (AOC). O inverso de A2 é a interseção do inverso do (AOC) com o
inverso de AB, isto é, a interseção da reta AC com (AOB) diferente de A, que é o ponto
A3. Então A2 e A3 são inversos entre si, logo, a reta A2A3 passa por O. Analogamente,
B1B3 e C1C2 passam por O. Portanto, A2A3, B1B3 e C1C2 são concorrentes.

A

B
C

C1

A2

B1

O

A3

B3 C2

Exemplo 11 (OBM 2010, Problema 4). Seja ABCD um quadrilátero convexo e M e N
os pontos médios dos lados CD e AD, respectivamente. As retas perpendiculares a AB
passando por M e a BC passando por N cortam-se no ponto P. Prove que P pertence à
diagonal BD se, e somente se, as diagonais AC e BD são perpendiculares.

Solução. Considere uma homotetia de razão 2 centrada em D. Tal homotetia levará os
pontos M e N, respectivamente, nos pontos C e A, e o ponto P será levado num ponto da
reta BD, chamado de P. Como MP ⊥ AB e NP ⊥ BC, tem-se que AP ⊥ BC e CP ⊥ AB.
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Como AP e CP são alturas do triângulo ABC, P é o ortocentro de ABC e, portanto, BD
é perpendicular a AC.

D C

B

M

A

N
P

Y

X P ′

K

Para provar a volta, isto é, que, se AC e BD são perpendiculares, então P pertence
à diagonal BD, pode-se usar uma ideia análoga à que foi usada acima. Porém, dessa
vez, note que os segmentos AC e XY são antiparalelos com respeito ao ângulo ∠ABC,
pois XY é paralelo ao segmento formado pelos pés das alturas relativas aos lados AB
e BC do triângulo ABC. Segue que o quadrilátero AXYC é inscritível e, pelo Lema
3, a inversão de centro em B e raio igual à raiz quadrada da potência de ponto de
B em relação ao circuncírculo (AXY) fará com que X = A, Y = C, A = X e C = Y.
Como ∠BKA = ∠BKC = 90◦, tem-se que ∠BAK = ∠BCK = 90◦. Portanto, K = P e,
consequentemente, B, K e P são colineares.

Observação 3. Ao enunciado deste problema apresenta deve ser adicionada a condição
que o ângulo ∠ABC seja diferente de 90◦, pois caso contrário, o ponto P será o próprio
B e, nesse caso, o segmento BD poderá não ser a altura do triângulo ABC.

Exemplo 12 (OBM 2011, Problema 5). Seja ABC um triângulo acutângulo e H seu
ortocentro. As retas BH e CH cortam AC e AB em D e E, respectivamente. O circuncír-
culo de ADE corta o circuncírculo de ABC em F ̸= A. Provar que as bissetrizes internas
de ∠BFC e ∠BHC se cortam em um ponto sobre o segmento BC.

Solução. Sejam X a interseção de AH com o circuncírculo (ABC) e H o pé da altura
AH. Como ∠BEC = ∠BDC = 90◦, o quadrilátero BEDC é inscritível. Considere a
inversão com centro em A e raio igual à raiz quadrada da potência de ponto de A em
relação a (BED). Pelo Lema 3, sabe-se que ela levará (ABC) à reta DE e (ADE) à
reta BC. Como AEHD é inscritível, o inverso de H pertence à reta BC e, portanto,
H é o inverso de H. Como F é a intersecção de (ABC) e (ADE) diferente de A, o
inverso de F = F é a intersecção entre DE e BC. Como X pertence a (ABC), tem-se que
X = AH∩DE. Da construção do conjugado harmônico, tem-se que F, H, D = B e E = C
formam uma quádrupla harmônica e, consequentemente, F, X, B = D e C = E também
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formam uma quádrupla harmônica. Portanto, o quadrilátero FXBC é harmônico. Então,
segue que as bissetrizes dos ângulos ∠BFC e ∠BXC se encontram no mesmo ponto em
BC

(
pois BF

FC
= BX

BC

)
, e, por simetria em relação ao segmento BC, a bissetriz de ∠BHC

também é concorrente no mesmo ponto em BC.

B

A

C

H

H ′

E

D
F

X

F ′

X ′

Uma segunda solução pode ser obtida usando o círculo de Apolônio. Continuando do
primeiro parágrafo, seja HM a bissetriz de ∠BHC, então há um círculo de Apolônio que
passa por H e M. Se F pertencer a essa circunferência, o problema está resolvido, pois ela
é o lugar geométrico dos pontos P tais que PM é bissetriz interna de ∠BPC. Do Lema 4,
sabe-se que HH = HX e, como BC ⊥ HX e o centro do círculo de Apolônio está na reta
BC, obtém-se que BC é a mediatriz de HX. Consequentemente, X pertence ao círculo de
Apolônio. Como F, X, B = E e C = D formam uma quádrupla harmônica, obtém-se que
CX
CF

= BX
BF

, que, pela fórmula da distância entre pontos inversos, resulta em CX
BX

= CF
BF

.
Desta forma, F pertence ao círculo de Apolônio.

Exemplo 13 (OBM 2012, Problema 2). Dado um triângulo ABC, o exincentro relativo
ao vértice A é o ponto de interseção das bissetrizes externas de ∠B e ∠C. Sejam IA, IB
e IC os exincentros do triângulo escaleno ABC relativos a A, B e C, respectivamente,
e X, Y e Z os pontos médios de IBIC , ICIA e IAIB, respectivamente. O incírculo do
triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove
que as retas DX, EY e FZ têm um ponto em comum pertencente à reta IO, sendo I e O
o incentro e o circuncentro do triângulo ABC, respectivamente.

Solução. Pelo Lema 1 e do fato que as bissetrizes internas e externas são perpendiculares,
obtem-se que IAIBIC é o triângulo antipedal de I com relação ao triângulo ABC e que I
é o ortocentro de IAIBIC. Como o incentro é conjugado isogonal dele próprio, do Lema
2, sabe-se que seu triângulo pedal e seu triângulo antipedal em relação ao triângulo ABC
são homotéticos, isto é, DEF e IAIBIC são homotéticos. Consequentemente, os triângulos
XYZ e DEF são homotéticos.
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Como o circuncírculo (ABC) é o círculo dos 9 pontos do triângulo IAIBIC (pois A, B e
C são os pés das alturas do triângulo IAIBIC), os pontos X, Y e Z pertencem a (ABC).
Como I é o circuncentro de DEF e O é o circuncentro de XYZ, a homotetia que leva DEF
a XYZ também leva I a O. Como o centro dessa homotetia é o ponto no qual concorrem
DX, EY e FZ, ele é colinear com I e O.

Exemplo 14 (OBM 2013, Problema 1). Sejam Γ um círculo e A um ponto exterior a Γ .
As retas tangentes a Γ que passam por A tocam Γ em B e C. Seja M o ponto médio de
AB. O segmento MC corta Γ novamente em D e a reta AD corta Γ novamente em E.
Sendo AB = a e BC = b, calcular CE em função de a e b.

Solução. Da forma como o quadrilátero BDEC foi construído, segue que ele é um
quadrilátero harmônico, pois

BD

BE
=

AB

EA
=

AC

EA
=

CD

EC
.

Então, o feixe formado pelas retas CA, CB, CM e CE é harmônico e, como M é ponto
médio de AB, tem-se que CE ∥ AB, pois caso contrário se eles se intersectam em E ′

teríamos que E ′, B, M e A formariam uma quadrupla harmônica, o que implicaria que M
também seria ponto médio do segmento E ′A. Desse paralelismo, obtém-se que B é o ponto
médio do arco CE e, consequentemente, BE = BC = b. Com isso, e como ∠BEC = ∠BCA,
tem-se que os triângulos CBE e ABC são semelhantes. Consequentemente, obtém-se que

CE =
b2

a
.
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A

B

C

M

D

E

X

Exemplo 15 (OBM 2013, Problema 6). O incírculo do triângulo ABC toca os lados BC,
CA e AB nos pontos D, E e F respectivamente. Seja P o ponto de interseção das retas
AD e BE. As reflexões de P em relação a EF, FD e DE são X, Y e Z, respectivamente.
Prove que as retas AX, BY e CZ têm um ponto comum pertencente à reta IO, sendo I e
O o incentro e o circuncentro do triângulo ABC.

Solução. Pelos Lemas 2 e 6, sabe-se que a reta IO de ABC é a reta de Euler de DEF e
que o triângulo órtico de DEF é homotético ao triângulo ABC (pois ABC é o triângulo
antipedal de I em relação a DEF).

Como os lados de XYZ são paralelos aos lados do triângulo órtico de DEF (pois
os lados de ambos os triângulos são perpendiculares aos lados de DEF), tem-se que os
triângulos ABC e XYZ são homotéticos. Pelo Lema 7, sabe-se que P é o ponto de Lemoine
de DEF. Pelo Lema 8, sabe-se que o conjugado isogonal de P (ponto Q) em relação ao
triângulo DEF, isto é, o baricentro de DEF, é o circuncentro de XYZ. Por fim, como AX,
BY e CZ concorrem no centro da homotetia que leva XYZ em ABC (ponto K), tem-se
que K é colinear com o baricentro de DEF e com o ponto O, isto é, ele está na reta IO.
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A

B

C

I

E

F

D

P

X

Z

Y

O

K

Q

Uma outra ideia é usar quádruplas harmônicas. Sejam M = BC ∩ EF, N = AD ∩ EF,
T o pé da altura relativa ao lado EF do triângulo DEF e X o pé da perpendicular de P em
EF. Como AD, BE e CF concorrem no ponto de Gergonne (P) do triângulo ABC, tem-se
que M, D, B e C formam uma quádrupla harmônica e, consequentemente, A, P, N e
D formam uma quádrupla harmônica. Como TD ⊥ EF, há um círculo de Apolonio que
passa por D, T e N e, portanto, EF é bissetriz do ângulo ATP. Por simetria em relação
a EF, obtem-se que os triângulos PXT e XXT são congruentes. Então, EF é bissetriz do
ângulo PTX e, portanto, X está na reta AT . De forma análoga para Y e Z, tem-se que
AX, BY e CZ concorrem no centro da homotetia que leva o triângulo órtico de DEF no
triângulo ABC, isto é, ele está na reta IO.

A

B

C

E

F

D

P

X

O

M

X ′

T

N

Exemplo 16 (OBM 2014, Problema 6). Seja ABC um triângulo com incentro I e
incírculo ω. O círculo ωA tangencia externamente ω e toca os lados AB e AC em A1 e
A2, respectivamente. Seja rA a reta A1A2. Defina rB e rC de modo análogo. As retas
rA, rB e rC determinam um triângulo XYZ. Prove que o incentro de XYZ, o circuncentro
de XYZ e I são colineares.
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Solução. Considere que as tangentes comuns às circunferências ω e ωA, ω e ωB, ω e
ωC se cruzam nos pontos M, N e P. Sejam H o ponto de tangência entre ω e ωA e D,
E e F os pontos de tangência de ABC com seu incírculo.

A homotetia que leva ω em ωA também leva FE em A1A2. De forma análoga pra
ωB e ωC, obtem-se que os lados de DEF e XYZ são paralelos e, consequentemente, DEF
e XYZ são homotéticos. Portanto, o centro da homotetia que leva DEF em XYZ é colinear
com o circuncentro de DEF (que é o ponto I) e com o circuncentro de XYZ.

Como a tangente comum a ω e ωA divide os segmentos FA1 e EA2 em duas partes,
onde cada parte é igual à sua correspondente no outro segmento. Do Teorema de Tales,
essa tangente divide o segmento FZ em duas partes iguais. De forma análoga, a tangente
comum a ω e ωB divide o segmento FZ em duas partes iguais. Então, o ponto P divide
FZ em duas partes iguais. Consequentemente, F, Z e P são colineares e os triângulos
DEF, XYZ e MNP são homotéticos sob um mesmo centro. Então, o incentro de MNP,
que é o próprio I, o incentro de XYZ e o centro da homotetia são colineares. Portanto, o
incentro de XYZ, o circuncentro de XYZ e I são colineares.

A

B
CH

F E

D

B2

B1

A2
A1

Z

P

Dicas para demonstrar os Lemas

1. Use uma homotetia centrada em A e veja a relação entre o incírculo e o ex-incírculo
nessa homotetia.

2. Faça marcação de ângulos e descubra um quadrilátero inscritível.

3. Use a fórmula da distância entre pontos inversos.



40 Transformações Geométricas na OBM

4. Use uma homotetia centrada no ortocentro.

5. Use quádruplas harmônicas e descubra um círculo de Apolônio.

6. Use o Lema 2 no ortocentro de DEF e o Lema 5 para descobrir relações entre os
pontos notáveis de DEF e de ABC.

7. Use a quádrupla harmônica formada por D, o ponto médio de BC e os pontos em
que o segmento formado por D e o ponto médio de BC cruzam (ABC) e depois
descubra um feixe harmônico que parte de A. OBS: em [11], pode ser encontrada
uma demonstração interessante usando outra quádrupla harmônica.

8. Use a circunferência que passa por P e duas das reflexões e faça marcação de
ângulos.
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Artigo: Teorema de Casey, a ida e a volta

• Nível avançado
Régis Prado Barbosa

Cólegio Etapa - São Paulo.

O Teorema de Casey traz resultados sobre configurações muito complexas da geometria
plana. Tais configurações já apareceram em testes de seleção para a IMO e na própria
IMO, como por exemplo, no problema 6 do ano de 2011. Resolver essas questões sem
este teorema é praticamente impossível, por isso recomenda-se ter conhecimento deste
resultado.
Teorema 2 (Casey). Sejam Γ1, Γ2, Γ3 e Γ4 quatro circunferências num plano e tij o
comprimento do segmento entre os pontos de tangência da tangente externa comum às
circunferências Γi e Γj. A relação

t13 · t24 = t12 · t34 + t14 · t23
é satisfeita se, e somente se, as quatro circunferências são todas tangentes ou internamente
ou externamente a uma circunferência, ou são todas tangentes a uma reta do mesmo
lado.

Essa é a forma mais conhecida do teorema de Casey. Em sua forma mais geral
considera-se também casos em que algumas das quatro circunferências tangenciam a
quinta internamente e outras externamente. Nesses casos se duas das quatro circun-
ferências tangenciarem do mesmo modo, ambas internas ou ambas externas, usa-se a
tangente externa tij na relação. Caso tangenciem de modo diferente, usa-se tij que é o
comprimento da tangente comum interna. As demonstrações são praticamente análogas.
A nossa proposta é explorar apenas a forma mais conhecida.

Na figura a seguir as quatro circunferências são tangentes internamente a uma quinta

t12

t23

t34

t14
t24

t13

O

C1

C2

C4

C3
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Para a demonstração, vamos usar inversão e alguns teoremas auxiliares. Se o leitor
não está familiarizado com esta técnica da inversão pode ler sobre o assunto em [3]. A
seguir enunciamos os teoremas que usaremos na prova do resultado principal.

Teorema 3. Dados dois pontos quaisquer P e Q no plano e P ′ e Q ′ seus inversos com
respeito a uma inversão com centro O e raio r. A seguinte relação é satisfeita:

P ′Q ′ = PQ · r2

OP · OQ
.

Teorema 4. Dados quaisquer quatro pontos P, Q, R e S e P ′, Q ′, R ′ e S ′ seus respectivos
inversos com respeito a uma inversão de centro O e raio r, temos a seguinte relação:

P ′Q ′ · R ′S ′

P ′S ′ · R ′Q ′ =
PQ · RS
PS · RQ

.

Teorema 5. Considere duas circunferências Γ1 e Γ2 de raios r1 e r2 dispostas de forma
que existe tangente externa comum de comprimento t12. Uma inversão de centro fora
das duas circunferências ou de centro dentro de ambas conserva a razão entre o quadrado
do comprimento da tangente comum externa e o produto dos raios, ou seja:

t212
r1r2

=
t ′2
12

r ′
1r

′
2

.

Demonstração. Considere as circunferências Γ1, Γ2 e uma reta que passa pelos centros
de ambas e corta as circunferências nos pontos P1, Q1, P2 e Q2. Seja d a distância entre
os centros. Logo,

P1P2 · Q1Q2

P1Q1 · P2Q2
=

(d+ r1 − r2) (d− r1 + r2)

2r1 · 2r2
=

d2 − (r1 − r2)
2

4r1r2
=

t212
4r1r2

.

Considere uma circunferência C3 ortogonal às circunferências C1 e C2 que corta C1 e
2 nos pontos R1, S1, R2, S2 como na figura. Vejamos que as linhas P1R1, Q1S1, P2R2 e
Q2S2 são colineares.

C3

R1

S2

C1 C2
Q2

X

P1 Q1 P2

α 90◦ − α

H

2α

α

9
0 ◦

−
α

α

β

ββ

α

S1

R2
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Seja H o ponto sobre a reta que passa pelos centros tal que C3H é a reta perpendicular a
C1C2. Considere o ponto X a interseção das retas P1R1 e Q2S2. Definem-se os ângulos:

α = ∠C1P1R1 e β = ∠C2Q2S2.

Usando que a soma dos ângulos internos do triângulo △P1XQ2 é 180◦, tem-se:

∠R1XS2 = 180◦ − α− β,

e como P1Q1 é diâmetro da circunferência Γ1:

∠P1R1Q1 = 90◦.

Do fato que o triângulo △P1C1R1 é isósceles em C1, segue que:

∠C1R1P1 = α→ ∠C1R1Q1 = 90◦ − α⇒ ∠C1Q1R1 = 90◦ − α⇒ ∠R1Q1H = 90◦ + α,

e pela ortogonalidade entre as circunferências Γ1 e Γ3, sabemos que ∠C3R1C1 = 90◦.
Logo, observando os ângulos em torno do ponto R1, podemos concluir que:

∠C3R1Q1 = α.

Analogamente, prova-se que:

∠S2P2H = 90◦ + β e ∠C3S2P2 = β,

logo somando os ângulos do pentágono Q1R1C3S2P2, temos:

∠R1C3S2 = 360◦ − 2α− 2β = 2 · ∠R1XS2, assim X está sobre a circunferência Γ3.

Por outro lado, podemos determinar ∠C3R1X.

∠P1R1Q1 = 90◦ → ∠XR1Q1 = 90◦ ⇒ ∠C3R1X = 90◦ − α.

Como, △R1C3X é isósceles:

C3R1 = C3X→ ∠C3XR1 = 90◦ − α⇒ ∠XC3R1 = 2α.

Se analisarmos os ângulos do quadrilátero C3HQ1R1, obtemos

∠HC3R1 = 180◦ − 2α⇒ ∠XC3R1 + ∠HC3R1 = 180◦, portanto H,C3 e X

são colineares. Além disso, como ∠XC3R1 = 2α é ângulo central de Γ3, temos ∠XS2R1 =
α, e assim

△XR1S2 ∼ △XQ2P1 pois ∠XS2R1 = ∠XP1Q2 e ∠S2XR1 = ∠P1XQ2.
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Logo seus lados são proporcionais e disso:

XR1 · XP1 = XQ2 · XP2 ⇒ PotΓ1 X = PotΓ2 X,

portanto X está no eixo radical de Γ1 e Γ2.

Notando que X pode ser visto como o segundo ponto de interseção de P1R1 com Γ3 ou
como o segundo ponto de interseção de Q2S2 com Γ3. Os passos feitos até aqui permitem
concluir que:

P1R1, Q1S1, P2R2 e Q2S2 passam por um mesmo ponto X.

Considere a inversão de centro X de raio r =
√
PotΓ1X =

√
PotΓ2X. Já que X está sobre

o eixo radical de Γ1 e Γ2, essa transformação leva os pontos R1, S1, R2 e S2 nos pontos
P1, Q1, P2 e Q2, respectivamente. Pelo teorema 3 segue

R1R2 · S1S2
R1S1 · R2S2

=
P1P2 · Q1Q2

P1Q1 · P2Q2
=

t212
4r1r2

.

Agora considere uma inversão qualquer de centro fora de Γ1 e Γ2 ou dentro de ambas.
Ela levará Γ3 em Γ ′

3. Novamente pelo teorema 3, tem-se:

R ′
1R

′
2 · S ′

1S
′
2

R ′
1S

′
1 · R ′

2S
′
2

=
R1R2 · S1S2
R1S1 · R2S2

.

Sabendo que a ortogonalidade entre as circunferências é preservada na inversão, sabe-se
que Γ ′

3 é ortogonal a Γ ′
1 e a Γ ′

2, logo os passos indicados acima podem ser usados também
na figura invertida:

R ′
1R

′
2 · S ′

1S
′
2

R ′
1S

′
1 · R ′

2S
′
2

=
t ′
12

2

4r ′
1r

′
2

.

Fazendo uso dessas 3 equações, conclui-se que:

t212
4r1r2

=
t ′
12

2

4r ′
1r

′
2

⇒ t212
r1r2

=
t ′
12

2

r ′
1r

′
2

.

Agora estamos aptos à demonstração do Teorema de Casey. Divideremos a demons-
tração em duas partes:

Demonstração. Mostraremos primeiro a volta do teorema, isto é, suponha que vale a
equação entre as tangentes externas:

t13 · t24 = t12 · t34 + t14 · t23,

e provaremos que uma das três afirmações sobre as quatro circunferências é verdadeira:
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• são tangentes internamente a uma circunferência;

• são tangentes externamente a uma circunferência;

• são tangentes por um mesmo lado a uma reta.

Suponha sem perda de generalidade que r4 é o menor raio. Considere a transformação
que chamaremos de redução que mantem os centros Ci das circunferências e diminui os
raios para ri−r4. Essa transformação preserva a propriedade de haver uma circunferência
tangente a todas, isto é, antes e depois da transformação existe uma circunferência que
tangencia as quatro circunferências.

É fácil verificar o caso da reta. Existe uma reta tangente a todas do mesmo lado se, e
somente se, existia antes da transformação.

A
C

BE
B1

I
H

F

A

C
B

E
B1

I

H

F

No caso em que as quatro tangenciam internamente uma circunferência, temos a
situação da primeira figura acima onde unicamente são mostradas duas dessas circun-
ferências. Veja que a circunferência de centro A tangenciava as duas circunferências.
Diminuindo os raios, esta passa a conter o centro da menor circunferência e a tangenciar
a maior em outro ponto B1.

Os comprimentos das tangentes externas comuns não se altera, pois formam-se
paralelogramos. Considerando os casos possíveis apresentados na figura anterior, teremos:

EI = FH e EI ∥ FH⇒ é um paralelogramo ⇒ EF = HI.

No caso de a tangências iniciais serem externas, temos a segunda figura. Os resultados
são análogos, bastando lembrar que se deve aumentar o raio da circunferência que
tangencia as outras quatro ao invés de diminuir como feito na situação anterior.
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Essa transformação torna a circunferência Γ4 um ponto C4. Considere a inversão de
centro nesse ponto e raio R qualquer. Essa transformação, bem como a transformação
anterior, preserva os ângulos entre as figuras, ou seja, existe uma circunferência ou reta
com as propriedades citadas no enunciado do teorema após a transformação se, e somente
se, existia antes dela.

Tendo em vista que C4 está fora das outras circunferências, pois há tangentes externas
comuns, aplica-se o teorema 4 em todas as tangentes comuns entre as circunferências Γ1,
Γ2 e Γ3. Os comprimentos antes e depois serão relacionados pela equação:

tij = t ′
ij ·
√

ri·rj

r ′
i · r ′

j

, 1 ≤ i, j ≤ 3.

Já as tangentes que envolvem C4 podem ser expressas usando semelhança de triângulos.
Para isso, considere uma tangente C4Pi a uma das circunferências Γi. Como a inversão
preserva os ângulos, C4P

′
i será tangente à circunferência Γ ′

i . Considere a relação de
semelhança dos triângulos △C4PiCi △C4P

′
iK, onde K é o centro da circunferência Γ ′

i .
Vale lembrar que K não é o inverso do centro de Γi.

Por definição de inversão, sabe-se que C4Pi · C4P
′
i = R2, assim:

C4Pi

C4P
′
i

=
CiPi

KPi
⇒ t2i4

R2
=

ri

r ′
i

e portanto ti4 = R

√
ri

r ′
i

para 1 ≤ i ≤ 3. Por hipótese, sabemos que

t13 · t24 = t12 · t34 + t14 · t23.

Logo, substituindo essas equações na última equação, obtemos:

t ′
13

√
r1 · r3
r ′
1 · r ′

3

· R

√
r ′
2

r2
= t ′

12

√
r1 · r2
r ′
1 · r ′

2

· R

√
r ′
3

r3
+ R

√
r ′
1

r1
· t ′

23

√
r2 · r3
r ′
2 · r ′

3

e desta forma t ′
13 = t ′

12+ t ′
23. Agora, tomemos novamente a circunferência de menor raio

e a reduza a um ponto, diminuindo o mesmo comprimento no raio de todas as outras.
Essa transformação não altera o comprimento das tangentes externas ou a existência de
circunferência ou reta tangente comum às três.

Devemos considerar três casos, cada um tratando as situações em que um dos três
raios r ′

1, r ′
2 ou r ′

3 é o menor dos três.

• Se o menor raio for r ′
1. Nesse caso, passaremos a ter em Γ ′

1 apenas um ponto.
Notemos que os pontos cujo comprimento da tangente em relação a uma certa
circunferência é fixo estão sobre uma circunferência. Assim, para o ponto C ′

1

satisfazer a equação ele será um dos pontos de interseção de duas circunferências de
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centros nos centros de Γ ′
2 e Γ ′

3 e raios
√
r ′
1
2 + t ′

12
2 e
√
r ′
3
2 + t ′

13
2, respectivamente.

Elas podem ter nenhum, um ou dois pontos em comum. Observemos que elas
têm pelo menos um ponto em comum. Considere a tangente comum entre Γ ′

2

e Γ ′
3, o comprimento é t ′

23. Prolongue este segmento no sentido de Γ ′
2 mais um

comprimento de t ′
12. Seja X1 o ponto sobre este prolongamento tal que a distância

de X1 ao ponto de tangência com Γ ′
2 é t ′

12.

X1

C ′
2

C ′
3

Os comprimentos dos segmentos desde X1 até os pontos de tangência com Γ ′
2 e Γ ′

3

são iguais a t ′
12 e t ′

12 + t ′
23 = t ′

13. Logo se houver apenas um ponto de interseção
será X1 = C ′

1 e se houver dois pontos X1 = C ′
1 ou X1 reflexão de C ′

1 em relação à
reta que passa pelos centros de Γ ′

2 e Γ ′
3. Em qualquer dos casos possíveis, teremos

as três circunferências tangentes a uma reta, do mesmo lado.

• Se o menor raio for r ′
2. Passaremos a ter um ponto Γ ′

2. Novamente, pelo argumento
dos pontos onde o comprimento das tangentes é fixado, sabemos que podemos ter
nenhum, um ou dois pontos com a propriedade citada para C ′

2. Para verificar que
há pelo menos um, consideremos a tangente externa Γ ′

1 e Γ ′
3 de comprimento t ′

13 e
o ponto X2 que a divide em pedaços t ′

12 e t ′
23.

X2

C ′
1

C ′
3

Assim, como feito anteriormente, teremos os casos em que X2 = C ′
2 e em que C ′

2 é a
reflexão de X2 em relação à reta que passa pelos centros. Novamente, em qualquer
dos casos possíveis, teremos as três circunferências tangentes a uma reta, do mesmo
lado.

• Se o menor raio for r ′
3.

Completamente análogo ao primeiro caso.
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Com isso, concluímos que as três circunferências são tangentes a uma reta por
um mesmo lado e, ainda mais, que o ponto de tangência de Γ ′

2 está entre os pontos de
tangência das outras duas circunferências. Logo, ao voltar as reduções de raio e a inversão
conclui-se que no início as quatro circunferências eram todas tangentes internamente a
uma circunferência ou tangentes externamente a uma circunferência ou tangentes a uma
reta pelo mesmo lado. Isso depende da posição final relativa entre as circunferências, a
reta e o ponto C ′

4. Sabe-se ainda que os pontos de tangência estão em sentido horário
na ordem Γ1, Γ2, Γ3 e Γ4 ou na ordem Γ1, Γ4, Γ3 e Γ2, considerando as posições finais dos
pontos de tangência.

Passemos agora a demonstrar a ida, isto é, mostraremos a relação entre os comprimen-
tos das tangentes dado que existe uma circunferência tangente às 4 dadas. Demonstrações
sem usar inversão podem ser encontradas em [2] e [4], mas aqui será apresentada uma
outra demonstração usando as ferramentas desenvolvidas. Os casos em que as circunfe-
rências tangenciam a quinta circunferência internamente e que tangenciam externamente
são análogos. Por isso será tratado com detalhes apenas o caso em que as circunferências
tangenciam internamente e que tangenciam uma reta.

Novamente, suponha sem perda de generalidade que o raio r4 é o menor dentre os
raios e façamos o processo de redução citado na demonstração anterior. A circunferência
Γ4 passa a ser um ponto na circunferência O, que por sua vez é tangente a todas as
outras três.

O

C3

C2

C4

C1
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Façamos uma inversão de centro C4 e raio qualquer. A circunferência O será levada
em uma reta O ′. As circunferências Γ1, Γ2 e Γ3 serão levadas em circunferências tangentes
a O ′ por mesmo lado, mais distante de C4 se a tangência inicial for interna e mais
próxima de C4 se a tangência inicial era externa.

O ′

C ′
1

C ′
2 C ′

3

C3

C2

C4

C1

É imediato verificar que:
t ′
13 = t ′

12 + t ′
23.

Como já vimos na demonstração da volta, isso é equivalente à equação:

t13 · t24 = t12 · t34 + t14 · t23.

Caso seja uma reta com a tangência do mesmo lado e estando os pontos de tangência na
ordem Γ1, Γ2, Γ3 e Γ4, teremos:

t13 · t24 =(t12 + t23) · (t23 + t34) = t12 · t23 + t12 · t34 + t223 + t23 · t34 =

= t12 · t34 + (t12 + t23 + t34) · t23 = t12 · t34 + t14 · t23

Assim, concluímos a demonstração da ida e da volta. □

O anterior mostra a forma do Teorema de Casey enunciada no Teorema 1. A forma
geral para circunferências é enunciada a seguir como o Teorema 5.

Teorema 6 (Teorema de Casey - forma geral). Considere quatro circunferências Γ1,
Γ2, Γ3 e Γ4 tangentes a uma circunferência K, com todas contendo completamente K ou
todas contidas completamente em K. Seja Tij o comprimento da tangente comum externa
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entre as circunferências Γi e Γj se eles tiverem mesmo tipo de tangência em relação a K,
ambas internas ou ambas externas, e da tangente comum interna se tiverem tangências
diferentes, uma interna e outra externa. Então considerando Γ1, Γ2, Γ3 e Γ4 em sentido
horário, tem-se:

T13 · T24 = T12 · T34 + T14 · T23.

Reciprocamente, se certas tangentes comuns entre quatro circunferências Γ1, Γ2, Γ3 e Γ4
satisfazem a equação

T12 · T34 ± T13 · T24 ± T14 · T23 = 0,

com alguma combinação de sinais, então essas circunferências são tangentes a uma
circunferência K seguindo uma das seguintes possibilidades:

• Se todas as tangentes são externas, então todas têm mesma tangência em relação a
K, todas internamente ou todas externamente.

• Se todas as tangentes em relação a uma circunferência são internas e todas as
outras são externas, então esta possui tangência diferente das outras três.

• Se as circunferências podem ser pareadas de modo que dentro do par usa-se tangentes
externas e entre pares diferentes tangentes internas, então as duas circunferências
de cada par tem tangência do mesmo tipo e diferente da tangência do outro par.

Observe que a volta do teorema de Casey não considera todas as possibilidades de
tomar tangentes. Os casos abordados pela volta são os mesmos casos possíveis da ida.
Deve ser possível caracterizar quais circunferências tem um mesmo tipo de tangência e
quais circunferências tem o outro tipo. Lembrando que há apenas dois tipos possíveis,
tangenciar internamente ou tangenciar externamente.

Exemplo 17 (IMO/2011). Seja ABC um triângulo acutângulo com círculo circunscrito
Γ . Sejam l uma tangente a Γ e lA, lB e lC as retas obtidas pelas reflexões de l em relação
às retas BC, CA e AB, respectivamente. Mostre que o círculo circunscrito ao triângulo
determinado pelas retas lA, lB e lC é tangente ao círculo Γ .

Solução. Vamos começar com um lema:

Lema 10. Dado um triângulo ABC e uma tangente ao seu circuncírculo passando por
um ponto T no arco AB que não contém C, seja hx o comprimento da perpendicular pelo
vértice X à tangente dada, então:√

hA · sen∠A+
√
hB · sen∠B =

√
hC · sen∠C.

Demonstração. Considere a figura referente ao lema. Seja R o circunraio do triângulo
ABC
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O

C

A

B

D

hA

E

hB

T

hC

F

Usando o Teorema de Ptolomeu, que pode ser visto como Teorema de Casey onde cada
ponto pode ser visto como uma circunferência degenerada de raio 0, teremos:

CT · AB = AT · BC+ BT · AC⇒
CT · 2R · sen ∠C = AT · 2R · sen∠A+ BT · 2R · sen∠B⇒

CT · sen∠C = AT · sen∠A+ BT · sen∠B.

Sabendo que: ∠ABT = ∠ATD = α (inscrito e semi-inscrito no arco AT). Teremos:

hA

senα
= AT = 2R · senα⇒ AT2 = 2RhA ⇒ AT =

√
2RhA.

Analogamente, BT =
√
2Rhb e CT =

√
2Rhc. Substituindo estas três na equação,

teremos:

CT · sen∠C = AT · sen∠A+ BT · sen∠B√
2RhC · sen∠C =

√
2RhA · sen∠A+

√
2RhB · sen∠B√

hC · sen∠C =
√
hA · sen∠A+

√
hB · sen∠B

Agora voltemos para o problema. Defina os seguintes pontos:

A ′ = lA ∩ l, B ′ = lB ∩ l e lc ∩ l
A ′′ = lB ∩ lC, B ′′ = lA ∩ lC e C ′′ = lA ∩ lB.

Devido à construção, A ′ está sobre a reta BC, B ′ está sobre a reta AC e C ′ está sobre a
reta AB, pois a reflexão destes pontos em relação aos respectivos lados serão eles mesmos.
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C

A

B

FL
B ′

A ′ C ′

A ′′

B ′′

C ′′

J

D

E

lB lA

lC

l

Vejamos que:

∠A ′′C ′′B ′′ = ∠A ′C ′′B ′ = ∠A ′′B ′A ′ − ∠B ′A ′C ′′ (ângulo externo)
= 2 · ∠CB ′A ′ − (180◦ − 2 · CA ′B ′) (ângulos das reflexões de l)
= 2 · (∠CB ′A ′ + ∠CA ′B ′) − 180◦

= 2 · (180◦ − ∠C) − 180◦

= 180◦ − 2∠C

segue que ∠A ′′C ′′B ′′ = 180◦ − 2∠C. Analogamente, os outros ângulos são dados por:

∠A ′′B ′′C ′′ = 180◦ − 2∠B e ∠B ′′A ′′C ′′ = 180◦ − 2∠A.

No triângulo A ′B ′′C ′, como A ′B bissetriz externa e C ′B bissetriz interna, B é o exincentro
relativo a C ′. Logo, B ′′B é bissetriz externa do △A ′B ′′C ′ implicando que B ′′B é a bissetriz
interna do △A ′B ′′C ′. Por analogia, temos que A ′′A e C ′′C também são bissetrizes
internas do △A ′′B ′′C ′′. Essas três bissetrizes concorrem em um ponto J que é o incentro
do △A ′′B ′′C ′′. Observemos que:

∠BJA = ∠B ′′JA ′′ = 180◦ − 1
2
∠C ′′B ′′A ′′ − 1

2
∠C ′′A ′′B ′′

= 180◦ − 1
2
(180◦ − 2∠B) − 1

2
(180◦ − 2∠A)

= ∠A+ ∠B = 180◦ − ∠C.

Logo, ABCJ é inscritível e J está em Γ .
Seja JD a perpendicular a B ′′A ′′ por J e r := JD, o inraio do triângulo A ′′B ′′C ′′.

Sejam BE e BF perpendiculares por B às retas lc e l, respectivamente. Como C ′B é
bissetriz, temos BE = BF = hB, definida como no lema 1, usando como tangente a reta l.
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Para um ponto X fora da circunferência Γ , defina T(X) o comprimento da tangente por X
à circunferência Γ .

Calculando a potência do ponto B ′′ em relação a Γ :

T (B ′′)
2
= B ′′B · B ′′J⇒ T (B ′′) =

√
BE

sen (90◦ − ∠B)
· JD

sen (90◦ − ∠B)
,

portanto

T (B ′′) =

√
hB

cos∠B · r

cos∠B =

√
hB · r

cos∠B
Seja R ′′ o circunraio do △A ′′B ′′C ′′, então, usando lei dos senos:

A ′′C ′′ = 2R ′′ · sen∠A ′′B ′′C ′′

= 2R ′′ · sen (180◦ − 2∠B)
= 2R ′′ · sen 2∠B
= 4R ′′ · sen∠B · cos∠B.

Assim,
T (B ′′) · A ′′C ′′ =

√
hC·r

cos ∠B
· 4R ′′ · sen∠B · cos∠B

= 4R ′′√r ·
√
hB sen∠B.

Analogamente, teremos os produtos:

T (C ′′) · A ′′B ′′ = 4R ′′√r ·
√
hC sen∠C

T (A ′′) · B ′′C ′ = 4R ′′√r ·
√
hA sen∠A.

Agora temos ferramentas suficientes para aplicar o teorema de Casey. Considere
as circunferências, dadas pelos centros e raios, C1(0, R) = Γ , C2(B

′′, 0), C3(C
′′, 0) e

C4(A
′′, 0). Vejamos se a relação das tangentes é satisfeita, isto é, queremos verificar se

T13 · T24 = T12 · T34 + T14 · T23. Para isso, vejamos que

T13 · T24 = T (C ′′) · A ′′B ′′ = 4R ′′√r ·
√
hC sen∠C.

De igual forma, T12 · T34 = T (B ′′) · A ′′C ′′ =
√
hB · sen∠B e T14 · T23 = T (A ′′) · B ′′C ′′ =

4R ′′√r ·
√
hA sen∠A. Logo,

T12 · T34 + T14 · T23 = 4R ′′√r
(√

hB sen∠B+
√
hA · sen∠A

)
= 4R ′′√r

(√
hC sen∠C

)
= T13 · T24.

Finalmente, pela recíproca do Teorema de Casey, existe uma circunferência K tangente
a estas quatro circunferência. Mas como C2, C3 e C4 são pontos, esta circunferência K é
o círculo circunscrito ao △A ′′B ′′C ′′. Sendo assim, o círculo circunscrito ao △A ′′B ′′C ′′

tangencia Γ .



Eureka! 43 55

Problemas propostos

1. (OBM/1996) Seja ABC um triângulo equilátero inscrito em uma circunferência Γ1;
Γ2 é uma circunferência tangente ao lado BC e ao menor arco BC de Γ1. Uma reta
através de A tangencia Γ2 em P. Prove que AP = BC.

2. (Teorema de Feuerbach, 1822) Sejam D, E e F os pontos médios dos lados BC, CA
e AB do △ABC, respectivamente.

(a) Prove que o círculo S inscrito no △ABC é tangente ao círculo N circunscrito
ao △DEF. Vale lembrar que este último é o círculo dos nove pontos do △ABC.

(b) Prove que o círculo exinscrito relativo ao lado BC também é tangente a N.

3. Seja ABC um triângulo com incentro I e cujo círculo circunscrito é Γ1. D é um
ponto arbitrário sobre o lado BC. Γ2 é uma circunferência tangente aos segmentos
AD e DC, em E e F, respectivamente, e ao arco AC de Γ1. Prove que E, F e I são
colineares.

4. Seja Γ uma semicircunferência com diâmetro AB e centro O. Uma reta perpendicular
a AB pelo ponto E ∈ OB intercepta Γ no ponto D. Uma circunferência, que é
tangente a DE e EF nos pontos K e C, respectivamente, é tangente ao arco AB no
ponto F. Prove que ∠EDC = ∠BDC.

5. As circunferências Ω1 e Ω2 tangenciam-se externamente no ponto I e ambas
tangenciam internamente uma terceira circunferência Ω. Uma tangente externa
comum às duas primeiras corta a terceira em dois pontos B e C. Uma tangente às
duas por I corta Ω num ponto A do mesmo de BC que o ponto I. Mostre que I é o
incentro do triângulo ABC.

6. (Problema de Thébault, 1938) Seja D um ponto sobre o lado AB do triângulo ABC.
A circunferência k1(O1, r1) é tangente interiormente à circunferência k circunscrita
ao ABC, é tangente a AD em M e é tangente a CD. A circunferência k2(O2, r2) é
tangente a k, é tangente a DB no ponto N e é tangente a CD. Seja r o inraio do
triângulo ABC e o ângulo ∠ADC = α. Demonstrar que:

r = r1 · cos2
(α
2

)
+ r2 · sen2

(α
2

)
.

7. (Romênia TST/2006) Seja ABC um triângulo acutângulo, com AB ̸= AC. Sejam
D o pé da perpendicular por A e ω o círculo circunscrito ao △ABC. Seja ω1 o
círculo tangente a ω e aos segmentos BD e AD. Seja ω2 o círculo tangente a ω e
aos segmentos CD e AD. Seja l a tangente interior de ω1 e ω2 diferente de AD.
Prove que l passa pelo ponto médio de BC se, e somente se, 2BC = AB+AC.
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8. (Hong Kong/2009) Seja o △ABC um triângulo retângulo com ∠C = 90◦. Seja CD
a altura relativa a C, com D sobre o lado AB. Seja w o círculo circunscrito ao
△BCD. Seja v o círculo dentro do △ACD, tangente aos segmentos AD e AC nos
pontos M e N, respectivamente, e que também é tangente ao círculo w.

(a) Mostre que BD · CN+ BC · DM = CD · BM.
(b) Mostre que BM = BC.

9. (Banco IMO/1993) Considere um triângulo ABC, de incentro I, e cujo círculo
circunscrito denota-se por Γ1; Γ2 é uma circunferência tangente aos lados CA e CB
nos pontos D e E, respectivamente, e ao arco AB de Γ1. Prove que I é o ponto
médio do segmento DE.

10. (Banco IMO/2000) Sejam D, E e F pontos sobre os lados BC, CA e AB, res-
pectivamente, do triângulo ABC tais que o triângulo DEF seja equilátero. Uma
circunferência Γ tangencia a circunferência circunscrita ao triângulo DEF, externa-
mente, e os segmentos CD e CE nos pontos L, M e N, respectivamente. Se P é um
ponto sobre Γ tal que FP é tangente a Γ , mostre que FP = DM+ EN.
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Introdução

Para motivar os resultados que vamos apresentar neste artigo, inicialmente vamos
apresentar um problema olímpico de geometria. Ao final vamos mostrar como as ideias e
ferramentas apresentadas neste artigo podem ser utilizadas para resolvê-lo.

Problema Inicial (problema 6 da OBM 2015 N3)

Seja ABC um triângulo escaleno e X, Y e Z pontos sobre as retas BC, CA, AB,
respectivamente, tais que ∠AXB = ∠BYC = ∠CZA. Os circuncírculos de BXZ e CXY
se cortam em P ̸= X. Prove que P está sobre a circunferência cujo diâmetro tem
extremidades no ortocentro (ponto de encontro das alturas) H e no baricentro (ponto de
encontro das medianas) G de ABC.
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A método de resolução Pontos que se movem (ou "Moving Points"em inglês) é
uma técnica para resolver problemas de geometria. A ideia básica é que a partir de
um resultado para três pontos em certo conjunto e algumas considerações podemos
generalizar o resultado para todos do conjunto. Essa ferramenta utiliza principalmente
conceitos e ferramentas da Geometria Projetiva como a razão cruzada e as transformações
projetivas no plano.

Vamos apresentar essas ferramentas necessárias de Geometria Projetiva, enunciar o
teorema principal deste artigo e aplicar nas resoluções de alguns problemas, incluindo
o problema inicial apresentado no começo desse material. Nesse artigo estamos abor-
dando o Pontos que se movem de maneira parcial, para ter acesso ao conteúdo completo
desta técnica o leitor consulte [01], que é a maior motivação deste texto. Caso o leitor
busque mais materiais de geometria para olimpíadas de matemática ou deseje se aprofun-
dar nas ferramentas de Geometria Projetiva apresentadas recomendamos que procure [02].

Plano projetivo

Uma classe de retas retrata uma direção no Plano Euclidiano, assim duas retas
são da mesma classe se, e somente se, elas são paralelas. O Plano Projetivo é obtido
a partir do Plano Euclidiano adicionando-se para cada classe de retas um ponto do
infinito ( ou ponto impróprio) que pertence a todas as retas daquela classe e uma
reta do infinito (ou reta imprópria) que é composta por todos os pontos do infinito.

No Plano Projetivo, podemos considerar que para quaisquer duas retas distintas no
plano, existe um ponto de interseção entre elas, mesmo se as retas forem paralelas. O
ponto do infinito sobre da reta r será denotado por ∞r.

Razão Cruzada

Considere quatro pontos colineares A, B, C e D. Definimos a razão cruzada desta
quádrupla como:

(A,B;C,D) =
CA

CB
÷ DA

DB

É importante destacar que utilizamos segmentos orientados como se fossem vetores.
Isto significa que se um sentido é positivo, então o oposto é negativo e para quaisquer
pontos X e Y temos

YX = −XY

Vale destacar também que algum desses pontos pode ser um ponto no infinito. Nesse
caso de maneira simplificada consideramos infinito sobre infinito em módulo igual a 1.
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Também podemos definir a razão cruzada para quatro retas PA, PB, PC e PD
concorrentes no ponto P utilizando senos de ângulos orientados.

P(A,B;C,D) = (PA, PB;PC, PD) =
sen(∠CPA)

sen(∠CPB)
÷ sen(∠DPA)

sen(∠DPB
)

Teorema 7 (Razão cruzada sob perspectiva). P(A,B;C,D) é um feixe de retas e A, B,
C e D colineares. Então

P(A,B;C,D) = (A,B;C,D)

Demonstração: Bastar usar Lei dos senos nos triângulos CPA, CPB, DPA e DPB e
cancelar os termos iguais.

■
Considere pontos A ′, B ′, C ′ e D ′ colineares tais que estão sobre as retas PA, PB, PC

e PD, respectivamente.

Pelo (7) temos as seguintes igualdades:

(A,B;C,D) = P(A,B, ;C,D) = P(A ′, B ′;C ′, D ′) = (A ′, B ′;C ′, D ′)

Denotamos esse resultado como perspectiva em P. Nota-se que a razão cruzada não
varia com as transformações perspectivas.
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Teorema 8 (Razão cruzada num quadrilátero cíclico). Sejam A, B, C e D pontos numa
circunferência, e seja P um ponto qualquer nessa circunferência. Então P(A,B;C,D) é
constante. Dessa forma, podemos escrever (A,B;C,D) = P(A,B;C,D).

Demonstração: Os ângulos ∠CPA, ∠CPB, ∠DPA e ∠DPB não dependem do ponto
P. Usando a interpretação de razão cruzada usando os senos, P(A,B;C,D) não depende
de P.

■
Podemos fazer a projeção dos pontos de uma circunferência sobre uma reta usando o

ponto P:

(A,B;C,D) = P(A,B;C,D) = P(A ′, B ′;C ′, D ′) = (A ′, B ′;C ′, D ′)

Denotamos de maneira análoga a perspectiva em P por.

(A,B;C,D) = (A ′, B ′;C ′, D ′)

Pontos que se movem

A ferramenta principal deste artigo será baseada na definição e no teorema a seguir.
Definição: Seja ℑ o conjunto dos objetos onde a razão cruzada é definida como retas,

cônicas e feixes de retas. Sejam C1, C2 ∈ ℑ, a função f : C1 → C2 é uma transformação
projetiva se preserva a razão cruzada, isto é, se para quaisquer pontos A,B,C,D ∈ C1

vale

(A,B;C,D) = (f(A), f(B); f(C), f(D))

Existe uma grande variedade de transformações projetivas no plano dentre as mais
frequentes temos:

• Dados uma reta l, um ponto P e o feixe de retas que passam por P (CP). A
transformação de l para CP que leva cada ponto X na reta PX. Notação: X 7→ PX.
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• Dado uma cônica γ e um ponto P ∈ γ. A transformação de γ para CP dada por
X 7→ PX.

• Para qualquer ponto P. A transformação de γ para γ dada por X 7→ Y com
Y ∈ PX ∩ γ e Y ̸= X.

• Inversão em relação a uma circunferência.

Teorema 9 (Pontos que se movem). Sejam f : C1 → C2 e g : C1 → C2 duas transfor-
mações projetivas. Vale a equivalência f ≡ g se, e somente se, f(Ai) = g(Ai) para três
elementos (geralmente pontos) distintos A1, A2 e A3 de C1.

Demonstração: A ida do teorema é imediata. Vamos provar somente a volta.
Considere três elementos distintos A1, A2, A3 ∈ C1 com f(Ai) = g(Ai) = Bi.

Para qualquer ponto A ∈ C1\(A1, A2, A3) existe um único ponto B ∈ C2 tal que
(A1, A2;A3, A) = (B1, B2;B3, B). Como as transformações são projetivas podemos
concluir que f(A) = g(A) = B.

■

Exemplo 18 (Olimpíada Nacional da Sérvia 2018). Seja ABC um triângulo com incentro
I. Os pontos P e Q são escolhidos nos segmentos BI e CI tal que ∠BAC = 2∠PAQ.
Se D é o ponto de interseção do incírculo com o lado BC do triângulo ABC, prove que
∠PDQ = 90◦.

Solução. Seja ∠BAC = 2α. Considere a transformação f : BI→ CI que leva cada ponto
P ∈ BI para o ponto Q ∈ CI tal que ∠PAQ = α. Veja que AP 7→ AQ é uma rotação de
ângulo fixo α e é uma transformação projetiva, pois conserva a razão cruzada. Assim,
P 7→ AP 7→ AQ 7→ Q é uma transformação projetiva. De maneira similar, definimos
g : BI→ CI de modo que g(P) = Y tal que ∠PDY = 90◦. Essa transformação também é
projetiva.
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Pelo Teorema 9, basta provar que f = g para três pontos distintos P e o resultado
segue.

• Se P = B, então f(B) = g(B) = I.

• Se P = I, então f(I) = g(I) = C.

• Se P e Q são os incentros dos triângulos ABD e ACD, respectivamente, então
f(P) = g(P) = Q pois

∠PAQ = ∠PAI+ ∠IAQ =
∠BAI

2
+

∠IAC

2
=

∠BAC

2
= α

∠PDQ = ∠PDI+ ∠IDQ =
∠BDI

2
+

∠IDC

2
= 90◦

Exemplo 19 (IMO 2010). Seja ABC um triângulo, I o seu incentro e Γ a sua circunfe-
rência circunscrita. A reta AI intersecta novamente Γ no ponto D. Sejam E um ponto
no arco BDC e F um ponto do lado BC tais que

∠BAF = ∠CAE <
1

2
∠BAC

Seja G o ponto médio do segmento IF. Mostre que as retas DG e EI se intersectam
sobre Γ .
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Solução. Vamos considerar que o ponto E pode se mover no arco BDC sem a restrição
sobre ser menor que metade do ângulo A. Sejam K1 ∈ EI∩ Γ e K2 ∈ DG∩ Γ , com K1 ̸= E
e K2 ̸= D, basta provarmos que K1 = K2. A transformação f : E→ K1 é projetiva, pela
simples projeção de Γ para si mesmo por I.

Observe que E 7→ AE 7→ AF 7→ F é uma transformação projetiva já que AE 7→ AF é
uma reflexão em relação à bissetriz interna AD e preserva a razão cruzada. O ponto G é
resultado de uma homotetia de centro I e razão 1

2
e, como D ∈ Γ , o K2 é resultado de

uma projeção sobre Γ . A transformação F 7→ G 7→ K2 é projetiva. Assim, g : E → K2

dada por E 7→ AE 7→ AF 7→ F 7→ G 7→ K2 é uma transformação projetiva.
Portanto, basta mostrar que f = g para três pontos distintos E.

• Se E = C, temos que F = B e K1 é o ponto médio do arco AB. É bastante conhecido
em olimpíadas de matemática que DI = DB e K1I = K1B então DK1 é mediatriz
BI, logo G ∈ DK1. Logo K1 = K2.

• Se E = B, é análogo ao caso anterior.

• Se E = D, temos que {F} = AD ∩ BC e K1 = A então G ∈ AD. Nesse caso, temos
K1 = K2 = A.

Exemplo 20. Sejam P e Q conjugados isogonais no triãngulo ABC. Ponto D é a projeção
ortogonal de Q em BC. A circunferência de diâmetro PA e a reta AQ intersectam o
circuncírculo de ABC em K ̸= A e em T ̸= A, respectivamente. Prove que os pontos K,
D e T são colineares.
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Solução. Vamos fixar o ponto T e mover Q sobre a reta AT . Note que P se move
sobre uma reta fixa r. Vamos considerar duas transformações f : Q→ K1 e g : Q→ K2,
onde K1 ∈ TD ∩ (ABC) e K2 ∈ (PA) ∩ (ABC) diferentes de T e A. Podemos notar que
Q 7→ D 7→ TD 7→ K1 é uma transformação projetiva usando projeções.

Vamos usar a inversão para mostrar que P 7→ K2 é uma transformação projetiva.
Considere a inversão de centro A. Cada ponto X ̸= A é levado em X ′. A inversão leva r
em r. A imagem de (ABC) é a reta B ′C ′. A circunferência de diâmetro AP é levada na
reta perpendicular a r por P ′.

A transformação P ′ 7→ K ′
2 é projetiva, já que P ′ se move sobre r que é fixa. Como a

inversão preserva a razão cruzada, P 7→ P ′ 7→ K ′
2 7→ K2 é uma transformação projetiva.

Vamos dar três posições do ponto Q e o leitor pode verificar que K1 = K2 em cada
caso.

• Q = T .

• Q =∞AT .

• Q = BC ∩ AT .

Resolução do Problema Inicial

A circunferência com diâmetro HG será denotada por (HG). Defina A ′ como a
segunda interseção de AG e (HG). Defina B ′ e C ′ de maneira análoga. Esses são os
HM points (ou Humpty points) e usaremos algumas propriedades desses pontos. Para se
familiarizar com elas o leitor pode estudar em [03].

Afirmação: A ′ ∈ (AYZ).
Vamos considerar duas transformações Y 7→ Z e Y 7→ Z ′, com Z ′ ∈ (AYA ′) ∩ AB

diferente de A. Veremos que elas são projetivas.
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• Veja que a circunferência (ZBC) é reflexão de (YBC) em relação a BC. Sendo Y ′ a
reflexão de Y, os pontos C, B, Z e Y ′ são concíclicos usando o ângulo fixo dado e a
reta ZY ′ tem direção fixa, já que ∠CY ′Z = ∠CBA que é fixo (ou o suplementar
deste ângulo dependendo da configuração). Dessa forma, Y 7→ Y ′ 7→ Z preserva
razão cruzada.

• A reta A ′Z ′ é uma rotação de A ′Y em relação a A ′ com ângulo ∠YAZ ′ = 180◦ −
∠BAC fixo. Assim Y 7→ A ′Y 7→ A ′Z ′ 7→ Z ′ preserva razão cruzada.

Pelo Teorema 9, basta verficar que a transformação é igual para três posições do
ponto Y. O ponto A ′ está na circunferência de diâmetro AH e nas circunferências por A
tangentes a BC em B e C.

• BY ⊥ AC. Nesse caso BY e CZ são alturas, (AYA ′) tem diâmetro AH e Z ′ = Z.

• ∠BYC = ∠B. A circunferência (AYA ′) tangencia BC em B e Z = Z ′ = B.

• ∠BYC = 180◦ − ∠C. Análogo ao caso anterior.

Analogamente, vale a afirmação para B ′ e C ′. Considere as duas transformações
f : X→ P ′, com P ′ ∈ (BB ′X)∩ (HG) e P ′ ̸= B ′, e g : X→ P ′′, com P ′′ ∈ (CC ′Y)∩ (HG) e
P ′′ ̸= C ′, dada por X 7→ Y 7→ P ′′. Elas preservam razão cruzada. Para P ′, seja R o segundo
ponto de interseção de XP ′ com (HG). Temos ∠RP ′B ′ = 180◦ −∠XP ′B ′ = ∠XBB ′ é fixo.
O ponto R é fixo e as transformações são projeções centradas em R. Para P ′′ é análogo.
Basta provarmos que f = g e teremos P ′ = P ′′. Para isso, basta considerar três posições
para o ponto X.

• AX ⊥ BC. Temos P ′ = P ′′ = H.
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• X ∈ (BB ′C ′) ∩ BC. Temos P ′ = P ′′ = C ′.

• X ∈ (BB ′A ′) ∩ BC. Temos P ′ = P ′′ = A ′.

Mais algums problemas interessantes

1. Seja ABC um triângulo com circuncírculo (O). A tangente de (O) em A intersecta
a reta BC em P. O ponto E é um ponto arbitrário sobre a reta PO e D está na
reta BE de modo que AD ⊥ AB. Prove que ∠EAB = ∠ACD (considere ângulos
orientados ou de maneira simples que são iguais ou somam 180◦).

2. Seja triângulo ABC com circuncírculo (O) e incírculo (I). X é um ponto arbitrário
em BC. A reta que passa por I perpendicular a IX intersecta a segunda reta
tangente de (I) paralela a BC em Y. AY ∩ (O) = Z ̸= A. T é o ponto de tangencia
entre A-incírculo mixtilinear e (O). Prove que X, Z e T são colineares. Para mais
informações sobre círculos mixtilineares o leitor por consultar [02].

3. Seja AB um diâmetro da circunferência ω. l é a reta tangente de ω em B. Tome
dois pontos C e D em l tal que B está entre C e D, respectivamente. Os pontos E
e F são os segundos pontos de interseção de AC e AD com ω. Os pontos H e G
são os segundos pontos de interseção de CF e DE com ω, respectivamente. Prove
que AH = AG.

4. Seja (O) um círculo e l uma reta. A reta perpendicular a l que passa por O intersecta
(O) em A e B. Sejam P1 e P2 pontos em (O). Sejam também P1A ∩ l = X1,
P1B ∩ l = X2, P2A ∩ l = Y1 e P2B ∩ l = Y2. Prove que (AX1Y1) e (AX2Y2) se
intersectam sobre (O).

5. No triângulo ABC com ∠B obtuso e AB ̸= BC. Sejam O o circuncentro e ω
circuncírculo de ABC. N é o ponto médio do arco ABC. (BON) ∩ AC = (X, Y),
BX ∩ ω = P ̸= B e BY ∩ ω = Q ̸= B. Prove que P,Q e reflexão de N sobre a reta
AC são colineares.

Resoluções

1. Resolução: Movendo o ponto E sobre a reta PO, a transformação f : E → D1

preserva a razão cruzada, onde D1 ∈ BE tal que D1A ⊥ BA, pois é uma projeção
sobre a reta r perpendicular para AB por A. Considere também a transformação
g : E → D2, onde D2A ⊥ BA e ∠ACD2 = ∠EAB, temos que AE 7→ CD2

preserva a razão cruzada pois é uma composição de translação e rotação, assim
E 7→ AE 7→ CD2 7→ D2 é projetiva.
Basta provar que f = g para três posições de E.
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• E = AB ∩ PO⇒ f(E) = g(E) = A.
• E = O⇒ f(E) = g(E) = B1 simétrico de B em (O).
• E = P ⇒ f(E) = g(E) = r ∩ BC.

2. Solução. Movendo o ponto X sobre a reta BC, a transformação f : X 7→ TX 7→ Z1

preserva a razão cruzada, onde Z1 ∈ TX∩ (O) difrente de T , e observe também que
a transformação g : X 7→ IX 7→ IY 7→ Y 7→ AY 7→ Z2 também é projetiva, definindo
Z2 ∈ AY ∩ (O) diferente de A.
Basta verificar que f = g para três posições de X.

• X = B⇒ f(X) = g(X) = B.
• X = C⇒ f(X) = g(X) = C.
• X =∞BC ⇒ f(X) = S tal que S ∈ (O) e TS ∥ BC. Por outro lado, g(X) = S,

pois Y é o simétrico do ponto de tangência de (I) com BC, os arcos BT e AS
possuem mesma medida, AS é isogonal a AT e, por homotetia e propriedades
do mixtilinear, A, Y e S são colineares.
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3. Solução. Neste problema temos dois pontos variáveis sobre a reta l, porém
para resolver o problema basta provar que AH = AG fixando um desses pontos e
movendo o outro sobre a reta. Vamos fixar o ponto C (o ponto E também fica fixo)
e vamos mover o ponto D.

Consideramos as duas transformações f : D 7→ G1, onde G1 é a reflexão de H
em relação a AB, e g : D 7→ G2, onde G2 ∈ FC ∩ ω diferente de F. Perceba que
f : D 7→ ED 7→ H 7→ G1 e g : D 7→ AD 7→ F 7→ CF 7→ G2 preservam a razão
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cruzada de acordo com as transformações vistas anteriormente.
Basta verificar que f = g para três posições de D.

• D = B⇒ f(D) = g(D) = B. Uma forma de vizualizar esta situação é pensar
no limite quando D se aproxima de B.

• D = C ′, simétrico de C em relação a B, ⇒ f(D) = g(D), por simetria.
• D = ∞l ⇒ f(D) = g(D) = E, pois F = A e H é o segundo encontro da

perpendicular a AB por E com ω.

4. Solução. Fixe o ponto P2 e mova P1 sobre (O), como no problema anterior. Veja
que Y1 e Y2 são fixos. Considere as duas transformações f : P1 7→ K1 e g : P1 7→ K2,
onde K1 ∈ (X1AY1) ∩ (O) e K2 ∈ (X2AY2) ∩ (O) diferentes de A fora nos casos
degenerados.
Quadrilátero AY1X1K1 é cíclico então ∠AK1X1 = 180◦ −∠AY1X1 é constante, logo
o ponto Z ∈ K1X1 ∩ (O) é fixo. Agora note que f : P1 7→ AP1 7→ X1 7→ ZX1 7→ K1

preserva a razão cruzada. Analogamente g também é projetiva.
Observamos que ZP2 ⊥ AB e Z é a reflexão de P2 em relação AB, pois:
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∠AP2Z = 180◦ −∠AK1X1 = 180◦ − (180◦ −∠AY1X1) = ∠AY1X1 = 90◦ −∠BAP2

Basta provar que f = g para três posições de P1.

• P1 = A⇒ f(P1) = g(P1) = P2.
• P1 = P2 ⇒ f(P1) = g(P1) = T onde M é o ponto médio do segmento Y1Y2

e T ∈ AM ∩ (O) diferente de A. Vale destacar que M é o circuncentro do
triângulo Y1P2Y2 e ∠MP2Y2 = ∠MY2P2 = ∠BAP2 e MP2 é tangente a (O).

• P1 = Z⇒ f(P1) = g(P2) = A.

5. Solução. Sejam M a segunda interseção de NO com (O) e N ′ a reflexão de N
sobre a AC. Fixe os pontos A, C e O e varie o ponto X sobre a reta AC. Veja que
N, N ′ e M também são pontos fixos. Os pontos B e Y são os segundos pontos de
interseção da circunferência (OXN) com (O), fora em caso degenerado. Observe
que OX ∥ PM, pois ∠PMN = 180◦ − ∠XBM = ∠XON. Vamos trabalhar as duas
transformações f : X 7→ Q e g : X 7→ Q1 onde Q1 é a segunda interseção de PN ′ e
(O).

Usando a ferramenta de inversão sobre (O), como no Exemplo 03, a transformação
f : X 7→ X ′ 7→ Y ′ 7→ Y 7→ Q é projetiva. Já que OX ∥ PM então X 7→ OX 7→ PM 7→
P é uma composição de projeções e uma translação e preserva razão cruzada. Como
N ′ é fixo, g : X 7→ P 7→ Q1 também é uma transformação projetiva.
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Sejam (ON) a circunferência de diâmetro ON e (ON) ∩ AC = {Z1, Z2}. Suponha
que NZ1 e NZ2 cruzam (O) novamente nos pontos P1 e P2, respectivamente. Basta
provar que f = g para três posições do ponto X.

• X = Z1 ⇒ f(X) = g(X) = P2. Nesse caso, B = N e como OZ1 e OZ2 são
perpendiculares a NZ1 e NZ2, respectivamente, Z1Z2 é base média de P1P2

e N ′ está sobre P1P2.
• X = Z2 ⇒ f(X) = g(X) = P1. Análogo ao caso anterior.
• X = A ⇒ f(X) = g(X) = C. Temos um caso degenerado e uma forma de

vizualizar é pensar no limite quando X se aproxima de A. Temos B = X = A
e podemos tomar P usando o paralelismo OX ∥ PM. Temos Q = C. Resta
apenas provar que P, N ′ e C são colineares. Veja que ∠NCP = ∠NMP =
∠NOX = ∠NOA = 2∠NCA = ∠NCN ′ usando ângulos em circunferência e a
simetria de N e N ′ em relação a AC.

Problemas propostos

1. (USA IMO TST 2019) Seja ABC um triângulo e sejam M e N os pontos médios
de AB e AC, respectivamente. Seja X um ponto tal que AX é tangente ao circun-
círculo de ABC. Denote ωB a circunferência por M e B tangente a MX e ωC a
circunferência por N e C tangente a NX. Prove que ωB e ωC se intersectam sobre
a reta BC.

2. (USA IMO TST 2012) Num triângulo acutângulo ABC, com ∠A < ∠B e ∠A < ∠C.
Seja P um ponto variável no lado BC. Os pontos D e E estão nos lados AB e AC,
respectivamente, tais que BP = PD e CP = PE. Prove que enquanto P se move
sobre o lado BC, o circuncírculo do triângulo ADE passa num ponto fixo diferente
de A.
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Artigo: Racionalizando o Logotipo da OBM

• Nível Avançado
Rafael Tupynambá Dutra

Belo Horizonte - MG
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Figura 1: Versão do logotipo da OBM com uma corrente de 6 círculos. Os números
representam a curvatura (inverso do raio) de cada círculo.

O logotipo da Olimpíada Brasileira de Matemática consiste em uma corrente de
Steiner de n círculos (n = 5) coloridos, todos tangentes a um dado círculo interno e a um
externo. Neste artigo, mostraremos que com n = 6 (e, também, com n = 4 ou n = 3, mas
não com n = 5), é possível obter figuras em que os raios de todos os círculos são racionais.
Estudaremos algumas propriedades interessantes dessas construções no que diz respeito
à álgebra, à geometria e até à teoria dos números. Por exemplo, na Figura 1, note que as
somas das curvaturas de círculos opostos coincidem (9+33 = 12+30 = 18+24 = 3(19−5)),
as retas que passam pelos centros ←−−→c9c18 e ←−−→c12c24 são paralelas e os 6 círculos coloridos
têm curvaturas múltiplas de 3. Por fim, mostraremos que essa construção se estende
como um fractal, permitindo o empacotamento de infinitos círculos de curvaturas inteiras.

Obviamente, se encontrarmos uma corrente de Steiner em que os raios de todos
os círculos são racionais, suas curvaturas também serão racionais e, multiplicando as
curvaturas pelo denominador comum, obtemos uma versão em escala da figura com todas
as curvaturas inteiras. É conveniente definir a curvatura do círculo externo com sinal
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negativo, simbolizando que o “interior” deste círculo é, na verdade, a parte exterior da
figura, contendo o ponto do infinito. Dessa forma, os interiores de todos os 8 círculos na
Figura 1 são disjuntos.

Propriedades Algébricas

Uma corrente de Steiner, como o logotipo da OBM, pode ser construída aplicando-se
uma inversão a uma figura originalmente simétrica, como já detalhado em um artigo da
4a edição da Revista Eureka! [5]. A Figura 2 mostra essa configuração original para uma
corrente de 6 círculos. Para as equações, será conveniente trabalhar no plano complexo.
Definindo a raiz sexta da unidade ω = e

2πi
6 , os 6 círculos da corrente são posicionados

com centros em ωk, para k ∈ {0, 1, 2, 3, 4, 5}. Eles têm raio 1/2, assim como o círculo
interior, enquanto que o círculo exterior possui raio 3/2. No caso geral, os raios dos n
círculos da corrente são sen π

n
, enquanto que o raio do círculo interno é 1− sen π

n
e o do

círculo externo 1+ sen π
n

.

1

ωω2

-1

ω4 ω5

z

Figura 2: Disposição inicial simétrica de n = 6 círculos. O centro de inversão z =
3
13

− 1
26

√
3 i foi utilizado para obter Figura 1.

Vamos posicionar o centro de inversão z no interior do círculo interno da Figura 2.
Dessa forma, a inversão levará o círculo interno da Figura 2 no círculo externo da Figura 1,
e vice-versa. Por exemplo, o centro de inversão z = 3

13
− 1

26

√
3 i permite a obtenção das

curvaturas inteiras mostradas na Figura 1.
Para estudar a inversão de um círculo, considere a Figura 3. Ao aplicar uma inversão

de centro z e raio de inversão ρ, o ponto x é levado em x ′ que satisfaz |x ′ − z| = ρ2

|x−z|
.
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Da mesma forma, y é levado em y ′ que satisfaz |y ′ − z| = ρ2

|y−z|
. O raio do novo círculo

r ′ = (|x ′ − z|− |y ′ − z|) /2 é então

w

r

v

r ′

z

yx y ′ x ′

Figura 3: Inversão de um círculo.

r ′ =
1

2

(
ρ2

|z−w|− r
−

ρ2

|z−w|+ r

)
=

ρ2r

|z−w|2 − r2
(14)

Da mesma forma, podemos calcular a posição do centro do novo círculo v (que não
é resultado da inversão do centro original w). Uma homotetia de centro z e razão r ′/r
leva w em v, de forma que

v = z+
r ′

r
(w− z) (15)

Usando essas fórmulas, podemos obter os seguintes teoremas sobre a corrente de
Steiner resultante. A notação Sn[ae, ai;b0, . . . , bn−1] é usada para se referir a uma
corrente de Steiner cujos n círculos possuem curvaturas b0, . . . , bn−1, nesta ordem, sendo
ae e ai as curvaturas dos círculos externo e interno. Em geral, cada corrente possui 4n
tais representações, já que podemos escolher o círculo inicial da corrente, o sentido de
rotação na corrente e a ordem entre ae e ai.

Teorema 10 (Correntes de Steiner de 6 círculos). Uma corrente de Steiner de 6 círculos
com curvaturas dadas por S6[ae, ai;b0, b1, b2, b3, b4, b5] satisfaz:

b0 + b3 = b1 + b4 = b2 + b5 (16)

b0 + b2 + b4 = b1 + b3 + b5 (17)

b0 + b1 + b2 + b3 + b4 + b5 = 9(ae + ai) (18)

b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5 =
81

4
(ae + ai)

2 + 9aeai (19)
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Demonstração. Como todas as equações a serem provadas são homogêneas, podemos
assumir sem perda de generalidade que o raio de inversão é ρ = 1. As curvaturas podem
ser diretamente calculadas invertendo a equação (14).

Para o círculo externo, usamos w = 0 e r = 1/2, obtendo

ae = 2|z|2 −
1

2

Note que escolhemos um ponto z interior ao círculo interno, de modo que |z| < 1/2
e a equação para ae satisfaz a convenção ae < 0. Vamos a seguir calcular as outras
curvaturas em função do valor de ae. Para o círculo interno, usamos w = 0 e r = 3/2,
para obter

ai = −
2

3
|z|2 +

3

2
=

4− ae

3

Aqui, tivemos que realizar uma mudança de sinal, já que |z| < 3/2, mas a curvatura
do círculo interno ai precisa ser positiva.

Para os 6 círculos restantes, utilizamos w = ωk e r = 1/2, de forma que

bk = 2
∣∣z−ωk

∣∣2 − 1

2
= 2

(
z−ωk

) (
z−ωk

)
−

1

2

Usando zz = |z|2 e ωω = |ω|2 = 1, obtemos

bk = ae + 2− 2
(
ωkz+ωkz

)
(20)

Para obter as equações (16) e (18), basta usar ωk +ωk+3 = 0 para calcular

bk + bk+3 = 2ae + 4 = 3(ae + ai)

Analogamente, usando ωk +ωk+2 +ωk+4 = 0, a equação (17) segue. Resta provar
a equação (19). Temos

5∑
k=0

b2
k =

5∑
k=0

(
(ae + 2)2 − 4(ae + 2)

(
ωkz+ωkz

)
+ 4

(
ωkz+ωkz

)2)
Como

∑5
k=0 ω

k = 0, o termo do meio é nulo. E como
∑5

k=0 ω
2k = 0, o último termo

se reduz a

5∑
k=0

4
(
ωkz+ωkz

)2
= 6 · 8|z|2 = 24ae + 12

Assim, temos
5∑

k=0

b2
k = 6(ae + 2)2 + 24ae + 12 = 6a2

e + 48ae + 36
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Por outro lado, o lado direito da equação (19) vale

9(ae + 2)2 + 3ae(4− ae) = 6a2
e + 48ae + 36

Note que, se fixarmos as curvaturas ae e ai dos círculos externo e interno, as
equações (16)-(19) são 5 equações envolvendo as 6 variáveis b0, . . . , b5. Assim, há apenas
1 grau de liberdade restante para determinar essas 6 curvaturas. Intuitivamente, isso
faz sentido, uma vez que fixados os círculos externo e interno, a posição de um círculo
na corrente determina a posição dos demais. Perceba que, mesmo sem fixar ae e ai, as
equações (16) e (17) já impõem 3 condições sobre as 6 variáveis b0, . . . , b5, restando
apenas 3 graus de liberdade para escolhê-las.

É possível demonstrar que a fórmula equivalente à equação (18) para correntes com
n = 5 círculos é

b0 + b1 + b2 + b3 + b4

5
=

cos2 π
5

sen2 π
5

· ae + ai

2
=

(
1+

2√
5

)
ae + ai

2

o que imediatamente implica que no caso n = 5 não há soluções em que as 7 curvaturas
sejam inteiras. Na verdade, algo mais forte pode ser provado.

Exercício 1. Mostre que na corrente S5[ae, ai;b0, b1, b2, b3, b4], as 5 curvaturas b0, b1, b2, b3, b4

só podem ser todas racionais se elas forem iguais.

Talvez ainda mais surpreendente que as equações apresentadas no Teorema 10 seja o
fato de que elas continuam válidas quando as curvaturas são substituídas pelos produtos
entre curvatura e o número complexo que representa o centro de cada círculo.

Teorema 11 (Correntes de Steiner de 6 círculos: centros). Uma corrente de Steiner
S6[ae, ai;b0, b1, b2, b3, b4, b5] cujos centros dos círculos são dados por ze, zi; z0, z1, z2, z3, z4, z5
no plano complexo satisfaz:

b0z0 + b3z3 = b1z1 + b4z4 = b2z2 + b5z5 (21)

b0z0 + b2z2 + b4z4 = b1z1 + b3z3 + b5z5 (22)

b0z0 + b1z1 + b2z2 + b3z3 + b4z4 + b5z5 = 9(aeze + aizi) (23)

b2
0z

2
0 + b2

1z
2
1 + b2

2z
2
2 + b2

3z
2
3 + b2

4z
2
4 + b2

5z
2
5 =

81

4
(aeze + aizi)

2 + 9aeaizezi (24)
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Demonstração. A equação (15) pode ser escrita como

1

r ′ v =
1

r ′ z+
1

r
(w− z)

A partir dela, podemos calcular os produtos para o círculo externo

aeze = (ae − 2)z

e para o círculo interno

aizi =

(
ai +

2

3

)
z

Para os círculos da corrente, temos

bkzk = bkz+ 2
(
ωk − z

)
de forma que

bkzk + bk+3zk+3 = 3(ae + ai)z− 4z = 3(aeze + aizi)

Isso demostra as equações (21) e (23). Similarmente, para demonstrar (22), fazemos

bkzk + bk+2zk+2 + bk+4zk+4 =
9

2
(ae + ai)z− 6z =

9

2
(aeze + aizi)

Resta demonstrar (24). Temos

5∑
k=0

b2
kz

2
k =

5∑
k=0

(
b2
kz

2 − 4bkz
2 + 4bkω

kz+ 4z2
)

A partir de (20), é possível mostrar que

5∑
k=0

bkω
k = −

12z

ρ2
= −3(3ai + ae)z

de forma que

5∑
k=0

b2
kz

2
k =

(
81

4
(ae + ai)

2 + 9aeai − 36(ae + ai) − 12(3ai + ae) + 24

)
z2

5∑
k=0

b2
kz

2
k =

(
81

4
(ae + ai)

2 + 9aeai − 48ae − 72ai + 24

)
z2
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Já o lado direito de (24) é igual a(
81

4

(
ae − 2+ ai +

2

3

)2

+ 9(ae − 2)

(
ai +

2

3

))
z2

=

(
81

4
(ae + ai)

2 + 9aeai − 48ae − 72ai + 24

)
z2

Propriedades Geométricas

Vamos agora usar as propriedades fornecidas pelos Teoremas 10 e 11 para inferir
aspectos geométricos da corrente mostrada na Figura 1. A Figura 4 mostra uma versão
rotacionada da mesma corrente, com escala ajustada de forma que o círculo externo seja
unitário.

Essa figura tem muitas propriedades geométricas interessantes. Por exemplo, re-
presentando por cm o centro do círculo de curvatura m, temos que as retas ←−−−→c−5c12 e←−−→c30c33 são paralelas, assim como o par de retas ←−−→c−5c9 e ←−−→c18c30, e também o trio de
retas ←−−−→c−5c30, ←−−→c9c18 e ←−−→c12c24. Interessantemente, o paralelismo das retas ←−−→c9c18 e ←−−→c12c24
decorre diretamente do fato de que esses dois pares de círculos vizinhos apresentam razão
2 entre eles: 18/9 = 24/12 = 2. Surpreendentemente, outras propriedades geométricas
de interesse também decorrem desse fato, como mostraremos no Teorema 12.

Definição 3. Uma corrente de Steiner de 6 círculos é chamada pareada se puder ser
representada como S6[ae, ai;b0, b1, b2, b3, b4, b5] com b1

b0
= b4

b5
= 2.

Na verdade, usando as equações (16) e (17), encontramos condições suficientes mais
fracas para que uma corrente seja pareada.

Exercício 2. Mostre que se uma corrente S6[ae, ai;b0, b1, b2, b3, b4, b5] satisfaz b1

b0
=

b4

b5
com b0 ̸= b5, ela é pareada.

Exercício 3. Mostre que se uma corrente S6[ae, ai;b0, b1, b2, b3, b4, b5] satisfaz b1

b0
= 2,

ela é pareada.

Teorema 12 (Correntes pareadas). Uma corrente de Steiner composta por 6 círculos
S6[ae, ai;b0, b1, b2, b3, b4, b5] pareada com b1

b0
= b4

b5
= 2 cujos círculos são chamados

Ce, Ci;C0, C1, C2, C3, C4, C5 com centros ze, zi; z0, z1, z2, z3, z4, z5 satisfaz as seguintes
propriedades geométricas:

1. A reta ←−→z0z1 e a reta ←−→z4z5 são paralelas.
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-5

19

918

30

33
24 12

Figura 4: Versão rotacionada da Figura 1, onde os centros dos círculos são dados
por c−5 = 0, c19 = − 8
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√
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9
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√
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− 2
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√
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3
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12
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3

√
3 i.

2. O ponto de tangência T0,1 entre C0 e C1 e o ponto de tangência T4,5 entre C4 e C5

formam uma reta
←−−−→
T0,1T4,5 perpendicular às retas ←−→z0z1 e ←−→z4z5 e, portanto, tangente

aos 4 círculos.

3. A reta
←−−−→
T5,0T2,3 definida analogamente é paralela às retas ←−→z0z1 e ←−→z4z5.

4. Sendo P1 o outro ponto de interseção da reta ←−→z0z1 com C1 e P4 o outro ponto de
interseção da reta ←−→z4z5 com C4, a reta

←−→
P1P4 contém os centros z2 e z3.

Demonstração. Primeiro vamos provar que se uma inversão leva um círculo da corrente
em outro, essa inversão necessariamente preserva o círculo interno e o círculo externo
tangente a ambos. Tal inversão precisa estar centrada no centro homotético externo E
dos dois círculos (vide Figura 5).

Imagine que traçamos uma reta qualquer pelo ponto E, que intersecta os dois círculos
nos pontos P, Q, Q ′ e P ′. Existe uma inversão de centro E que leva P em P ′ e Q em Q ′

(pares anti-homólogos). E existe uma homotetia de centro E que leva P em Q ′ e Q em
P ′ (pares homólogos).

Os triângulos PO1Q e Q ′O2P
′ são isósceles (raios) e semelhantes, já que a homotetia

leva um no outro. Logo, as retas ←−→PO1 e
←−→
P ′O2 se encontram em um ponto T2 tal que o

triângulo PT2P
′ é isósceles. Assim, existe um círculo centrado em T2 que tangencia os

dois círculos nos pontos P e P ′. O mesmo argumento prova que existe um outro círculo
tangente aos dois círculos originais em Q e Q ′. Como a inversão transforma P ↔ P ′ e
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E

P
Q

P ′

Q ′

O1 O2

T1

T2

Figura 5: Inversão de centro E transforma P ↔ P ′ e Q↔ Q ′.

Q ↔ Q ′ e preserva tangências, concluímos que a inversão precisa preservar o círculo
interno e o externo.

Aplicamos essa conclusão ao teorema da seguinte forma. Seja E o centro homotético
externo1 dos círculos C0 e C5 (vide Figura 6). A inversão IE de centro E que transforma
C0 ↔ C5 é tal que Ce ↔ Ce e Ci ↔ Ci. Mas, fixando-se os círculos externo e interno, a
posição de um círculo da corrente determina as posições dos outros. Logo, IE transforma
C1 ↔ C4 e C2 ↔ C3. Assim, o ponto E também é o ponto homotético externo dos
círculos C1 e C4. Dessa forma, uma homotetia HE de centro E e razão b5

b0
= b4

b1
leva C5

em C0 e C4 em C1, o que implica que as retas ←−→z0z1 e ←−→z4z5 são paralelas.

z0

z1

z2z3
z4

z5

zi

ze

E

R

T4,5 T0,1

T5,0

T2,3
P1

P4

Figura 6: Uma inversão IE de centro E transforma Ce ↔ Ce, Ci ↔ Ci, C0 ↔ C5,
C1 ↔ C4 e C2 ↔ C3. Uma inversão negativa IR de centro R transforma Ci ↔ Ce,
C0 ↔ C3, C1 ↔ C4 e C2 ↔ C5.

Agora note que tanto a homotetia HE quanto a inversão IE precisam levar o ponto
de tangência T4,5 no ponto de tangência T0,1. Mas a homotetia leva um ponto de um

1Assumimos aqui b0 ̸= b5. O caso b0 = b5 precisa ser tratado separadamente.
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círculo em seu par homólogo, enquanto que a inversão leva em seu par anti-homólogo, de
forma que elas só podem coincidir nos pontos de tangência. Assim, a reta que passa por
E, T4,5 e T0,1 precisa tangenciar os 4 círculos, sendo perpendicular às retas ←−→z0z1 e ←−→z4z5.

Agora, usamos as equações (16), (18), (21) e (23) para definir o ponto R como

R =
b0z0 + b3z3

b0 + b3
=

b1z1 + b4z4

b1 + b4
=

b2z2 + b5z5

b2 + b5
=

aeze + aizi

ae + ai

Esse ponto R é, por definição, o centro homotético interno dos pares (C0, C3), (C1, C4)
e (C2, C5). Três homotetias de centro R e razão negativa −b0

b3
, −b1

b4
ou −b2

b5
podem ser

usadas para levar C0 em C3, C1 em C4, ou C2 em C5, respectivamente. Enquanto que
uma homotetia de centro R e razão positiva − ai

ae
leva Ci em Ce.

Além disso, existe uma “inversão negativa” (inversão composta com reflexão) IR de
centro R que transforma Ci ↔ Ce. A inversão negativa IR precisa levar a corrente de 6
círculos em uma outra corrente de 6 círculos, sendo que as retas que unem seus centros
ao ponto R precisam ser preservadas. A única possibilidade é que a inversão negativa IR
transforma C0 ↔ C3, C1 ↔ C4, C2 ↔ C5.

Agora note que uma homotetia de centro R e razão −b1

b4
leva C1 em C4, enquanto

que uma homotetia de centro T5,0 com a mesma razão negtiva −b0

b5
= −b1

b4
leva C0 em

C5. Assim, a reta←−→RT5,0 precisa ser paralela às retas←−→z0z1 e←−→z4z5. Mas a inversão negativa
IR leva T5,0 em T2,3. Logo, a reta ←−−−→T5,0T2,3 é paralela às retas ←−→z0z1 e ←−→z4z5.

A seguir, usamos o fato de que a inversão IE mantém fixos T5,0 ↔ T5,0 e T2,3 ↔ T2,3
para concluir que esses dois pontos estão à mesma distância de E e, portanto, à mesma
distância da reta ←−−−→T0,1T4,5, que é perpendicular a ←−−−→T5,0T2,3 e passa por E. Por fim, note
que, como b1

b0
= b4

b5
= 2, T0,1 é o ponto médio entre z0 e P1 e, similarmente, T4,5 é o

ponto médio entre z5 e P4. Assim, a reta←−→P1P4 é a reflexão da reta←−→z0z5 em relação à reta←−−−→
T0,1T4,5 e, portanto, contém o ponto T2,3 e o ponto E. Como a inversão IE transforma
C2 ↔ C3, concluímos que essa reta ←−→P1P4 contém também os centros z2 e z3.

Propriedades Numéricas

Agora vamos estudar o problema de encontrar correntes de Steiner de 6 círculos
S6[ae, ai;b0, b1, b2, b3, b4, b5] com todas as curvaturas inteiras. Para tanto, procuramos
soluções inteiras para as equações (16), (17), (18) e (19). Como b0+b2+b4 = 9

2
(ae+ai),

precisamos ter ae + ai ≡ 0 (mod 2). Além disso, temos o seguinte resultado sobre as
curvaturas módulo 3.

Teorema 13 (Módulo 3). Uma corrente de Steiner S6[ae, ai;b0, b1, b2, b3, b4, b5] em
que todas as 8 curvaturas são inteiras precisa satisfazer b0 ≡ b1 ≡ b2 ≡ b3 ≡ b4 ≡ b5 ≡
0 (mod 3).
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Demonstração. A equação (19) exige que

b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5 ≡ 0 (mod 9) (25)

Além disso, pelas equações (17) e (18), precisamos ter

b0 + b2 + b4 = b1 + b3 + b5 ≡ 0 (mod 9) (26)

e, pelas equações (16) e (18), precisamos ter

b0 + b3 = b1 + b4 = b2 + b5 ≡ 0 (mod 3) (27)

Provaremos que essas condições só podem ser satisfeitas se todos os bk forem múltiplos
de 3. Por (27), sabemos que b2

0 + b2
3 só pode ser congruente a 0 ou 2 módulo 3.

Analogamente para b2
1 + b2

4 e b2
2 + b2

5. Por (25), precisamos ter todos os b2
k congruentes

a 0 módulo 3 ou todos os b2
k congruentes a 1 módulo 3.

Suponha, por absurdo, que exista uma solução em que os bk não são todos múltiplos
de 3. Então nenhum deles pode ser múltiplo de 3. Por (26), descobrimos que precisamos
ter b0 ≡ b2 ≡ b4 (mod 3) e b1 ≡ b3 ≡ b5 (mod 3). Sem perda de generalidade,
podemos assumir b0 ≡ b2 ≡ b4 ≡ 1 (mod 3) e b1 ≡ b3 ≡ b5 ≡ −1 (mod 3).

Escrevendo b0 = 3u0 + 1, b2 = 3u2 + 1, b4 = 3u4 + 1, b1 = 3u1 − 1, b3 = 3u3 − 1,
b5 = 3u5 − 1, a equação (26) nos diz que

u0 + u2 + u4 + 1 = u1 + u3 + u5 − 1 ≡ 0 (mod 3)

enquanto que a equação (25) nos dá

−u0 − u2 − u4 + u1 + u3 + u5 − 1 ≡ 0 (mod 3)

Absurdo: logo, todos os bk têm que ser múltiplos de 3.

Por (18), a média aritmética dos bk vale 3
2
(ae + ai), que é um número inteiro e

múltiplo de 3. Chamando essa média de 3c e usando as equações (16) e (17), podemos
escrever b0 = 3(c−d− e), b1 = 3(c− e), b2 = 3(c+d), b3 = 3(c+d+ e), b4 = 3(c+ e),
b5 = 3(c−d), para certos inteiros d e e. Com essa representação, as equações (16) e (17)
são automaticamente satisfeitas.

As equações (18) e (19) podem ser combinadas em uma única equação quadrática na
variável a, cujas soluções são ae e ai. Temos

ae + ai =
b0 + b1 + b2 + b3 + b4 + b5

9
= 2c

aeai =
b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5

9
−

(b0 + b1 + b2 + b3 + b4 + b5)
2

36

aeai = 6c2 + 4d2 + 4e2 + 4de− 9c2 = −3c2 + 4d2 + 4e2 + 4de
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Assim, a equação a2 − 2ca − 3c2 + 4d2 + 4e2 + 4de = 0 tem soluções a ∈ {ae, ai}.
O discriminante da equação é ∆ = 16(c2 − d2 − e2 − de). então, para termos soluções
inteiras, c2 − d2 − e2 − de precisa ser um quadrado perfeito. Procurando soluções com
todos os bk positivos, a primeira solução é a trivial c = 1, d = e = 0, que gera a corrente
S6[−1, 3; 3, 3, 3, 3, 3, 3] (Configuração simétrica como a da Figura 2).

-2

10 3

9
18

21
15

6

-2

10

3

918
21

15

6

Figura 7: A corrente de Steiner S6[−2, 10; 3, 6, 15, 21, 18, 9] mostrada à esquerda como
resultado de uma inversão de centro z = 9

28
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√
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√
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√
3 i,
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√
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9
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9

√
3 i.

A primeira solução após a trivial ocorre com c = 4, d = 1, e = 2 e se trata da corrente
S6[−2, 10; 3, 6, 15, 21, 18, 9], mostrada na Figura 7. Essa também é uma corrente pareada
(6/3 = 18/9 = 2), então muitas de suas propriedades geométricas já estão descritas pelo
Teorema 12.

Essa corrente também tem mais propriedades interessantes. Primeiramente, vemos
que os centros c−2, c3 e c6 são colineares (1/2 = 1/3+ 1/6). Além dos círculos pareados←−−→c9c18, também a reta←−−→c10c15 é paralela à reta←−→c3c6. Além disso, temos paralelismos entre←−−→c−2c9, ←−−→c10c18 e ←−−→c6c15, entre ←−−−→c−2c18 e ←−→c3c9, entre ←−−−→c−2c15 e ←−−→c3c10 e entre ←−−→c6c10 e ←−−→c15c21.

A corrente S6[−5, 19; 9, 12, 24, 33, 30, 18] das Figuras 1 e 4 é a segunda menor solução
não-simétrica, que pode ser obtida com c = 7, d = 1, e = 3.

Exercício 4 (Correntes de Steiner de 4 círculos). Mostre que uma corrente de Steiner
de 4 círculos com curvaturas dadas por S4[ae, ai;b0, b1, b2, b3] satisfaz:

b0 + b2 = b1 + b3 (28)
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b0 + b1 + b2 + b3 = 2(ae + ai) (29)

b2
0 + b2

1 + b2
2 + b2

3 =
3

2
(ae + ai)

2 + 2aeai (30)

Exercício 5. Mostre que uma corrente de Steiner Sn[ae, ai;b0, . . . , bn−1] com n círculos
só pode ter todas as n+ 2 curvaturas inteiras se n ∈ {3, 4, 6}.
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44
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Figura 8: A corrente de Steiner S4[−1, 7; 2, 2, 4, 4] mostrada à esquerda como resultado de
uma inversão de centro z =

(3−2
√
2)(1−i)

2
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2
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√
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7

√
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Para n = 4, a menor solução inteira é a corrente S4[−1, 7; 2, 2, 4, 4] mostrada na
Figura 8. Já a solução S4[−2, 16; 3, 6, 11, 8] mostrada na Figura 9 é a menor solução
não-simétrica. Ambas apresentam círculos diametralmente opostos (1/1 = 1/2 + 1/2,
1/2 = 1/3 + 1/6), além de círculos vizinhos com razão 2 (4/2 = 2, 6/3 = 2), mas aqui
isso não implica as propriedades geométricas como no caso n = 6.

Uma propriedade interessante das correntes com n = 4 é que nelas cada um dos 6
círculos é tangente a exatamente 4 círculos vizinhos, então todos os círculos desempenham
o mesmo papel. A corrente da Figura 9, por exemplo, poderia ser igualmente denominada
S4[3, 11; −2, 6, 16, 8] ou S4[6, 8; −2, 3, 16, 11].

Empacotamentos de Apolônio

A seguir, mostraremos que uma corrente de Steiner com curvaturas inteiras, como
a S6[−5, 19; 9, 12, 24, 33, 30, 18] das Figuras 1 e 4, pode ser usada para construir um
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Figura 9: A corrente de Steiner S4[−2, 16; 3, 6, 11, 8] mostrada à esquerda como resultado
de uma inversão de centro z =
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empacotamento de círculos de Apolônio como o da Figura 10, onde todos os infinitos
círculos possuem curvaturas inteiras. A construção se dá da seguinte forma:

A partir de uma corrente inicial S6[ae, ai;b0, b1, b2, b3, b4, b5], construímos uma
nova corrente constituída de 6 círculos S6[ae, a

′
i;b0, b1, b

′
2, b

′
3, b

′
4, b

′
5] que possui em

comum o círculo externo Ce e dois círculos vizinhos da corrente C0 e C1, mas agora
com um novo círculo interno C ′

i e uma nova continuação de 4 círculos C ′
2, C ′

3, C ′
4, C ′

5.
Assim, por exemplo, preservando o círculo externo (−5) e dois círculos vizinhos (9 e 12)
na Figura 10, obtemos uma nova corrente S6[−5, 27; 9, 12, 36, 57, 54, 30] com novo círculo
interno (27), que também pode ser vista na mesma figura.

Também é possível preservar o círculo interno e procurar por uma corrente com um
novo círculo “externo”. Por exemplo, preservando o círculo interno (19) e os mesmos dois
vizinhos (9 e 12), podemos obter uma nova corrente S6[19, 99; 9, 12, 180, 345, 342, 174],
que é um tipo de corrente em que todos os círculos têm curvaturas positivas e, portanto,
não possui um círculo “externo” no sentido usual. Geometricamente, os 5 novos círculos
encontram-se dentro da região delimitada pelos três círculos originais.

Esse procedimento pode ser repetido infinitas vezes, dando origem ao fractal da
Figura 10. Mostraremos a seguir como obter as curvaturas e centros dos novos círculos.

Teorema 14 (Corrente conjugada). Dada uma corrente de Steiner de 6 círculos
com curvaturas S6[ae, ai;b0, b1, b2, b3, b4, b5] é possível construir uma nova corrente
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Figura 10: Empacotamento de Apolônio baseado em uma corrente de Steiner de 6 círculos
S6[−5, 19; 9, 12, 24, 33, 30, 18].
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S6[ae, a
′
i;b0, b1, b

′
2, b

′
3, b

′
4, b

′
5] que tem os círculos Ce, C0 e C1 em comum. Além disso,

se a corrente original tinha todas as curvaturas inteiras, a nova corrente também terá.

Demonstração. Para encontrar a nova corrente, a ideia é escrever as equações (16), (17), (18)
e (19) somente em termos das curvaturas que serão preservadas (ae, b0 e b1) e da curva-
tura interna ai. A partir das equações (16), (17) e (18), podemos escrever

b2 =
3

2
(ae + ai) − b0 + b1 (31)

b3 = 3(ae + ai) − b0 (32)

b4 = 3(ae + ai) − b1 (33)

b5 =
3

2
(ae + ai) + b0 − b1 (34)

Substituindo em (19), obtemos

45

2
(ae + ai)

2 − 6(ae + ai)(b0 + b1) + 4(b2
0 + b2

1 − b0b1) =
81

4
(ae + ai)

2 + 9aeai

9

4
(ae − ai)

2 − 6(ae + ai)(b0 + b1) + 4(b2
0 + b2

1 − b0b1) = 0

Se as curvaturas originais forem inteiras, b0 e b1 são múltiplos de 3. Então temos a
seguinte equação de segundo grau com coeficientes inteiros em ai:

a2
i −

(
2ae +

8

3
(b0 + b1)

)
ai + a2

e −
8

3
(b0 + b1)ae +

16

9

(
b2
0 + b2

1 − b0b1

)
= 0

Essa equação possui duas raízes inteiras: o primeiro valor já conhecido de ai e um
segundo valor a ′

i que pode ser calculado como

a ′
i = 2ae +

8

3
(b0 + b1) − ai (35)

Uma vez conhecido o novo valor de ai, as equações (31), (32), (33) e (34) podem ser
usadas para calcular os novos valores de b2, b3, b4 e b5:

b ′
2 =

3

2
(ae + a ′

i) − b0 + b1 (36)

b ′
3 = 3(ae + a ′

i) − b0 (37)

b ′
4 = 3(ae + a ′

i) − b1 (38)

b ′
5 =

3

2
(ae + a ′

i) + b0 − b1 (39)
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Pelo Teorema 11, todas as equações se mantém válidas quando substituímos as
curvaturas pelos produtos entre curvatura e o centro do círculo, de forma que as equa-
ções (35), (36), (37), (38) e (39) nos dão

a ′
iz

′
i = 2aeze +

8

3
(b0z0 + b1z1) − aizi (40)

b ′
2z

′
2 =

3

2
(aeze + a ′

iz
′
i) − b0z0 + b1z1 (41)

b ′
3z

′
3 = 3(aeze + a ′

iz
′
i) − b0z0 (42)

b ′
4z

′
4 = 3(aeze + a ′

iz
′
i) − b1z1 (43)

b ′
5z

′
5 =

3

2
(aeze + a ′

iz
′
i) + b0z0 − b1z1 (44)

As equações (35)-(44) nos dão um procedimento direto para calcular as curvaturas e os
centros dos novos círculos, permitindo a construção de desenhos como o das Figuras 10 e 11.

Note que, quando um par de vizinhos satisfaz b1

b0
= 2, tanto a corrente original quanto

a corrente conjugada S6[ae, a
′
i;b0, b1, b

′
2, b

′
3, b

′
4, b

′
5] são pareadas. Assim, é possível ver

várias correntes pareadas nas Figuras 10 e 11.

Exercício 6. Estude as correntes S6[ae, ai;b0, b1, b2, b3, b4, b5] que satisfazem b2

b0
= 2 e

b4

b5
= 3

2
. Mostre que as retas que unem os centros dos círculos de razão 2 e 3

2
são paralelas.

Um exemplo pode ser visto na corrente S6[−2, 18; 9, 3, 18, 39, 45, 30] da Figura 11.

Ao final do artigo, mostramos mais 4 exemplos de empacotamentos de Apolônio,
baseados nas seguintes correntes de Steiner:

• S6[−1, 3; 3, 3, 3, 3, 3, 3], a corrente totalmente simétrica

• S4[−1, 7; 2, 2, 4, 4], a corrente da Figura 8

• S4[−2, 16; 3, 6, 11, 8], a corrente da Figura 9

• S3[−2, 34; 3, 6, 7], uma corrente de 3 círculos

Note que mostramos 3 exemplos de empacotamentos contendo as curvaturas −2,
3 e 6: um com n = 6, um com n = 4 e um com n = 3. Os empacotamentos com
n = 3 são bem conhecidos na literatura matemática, sendo chamados simplesmente de
empacotamentos de círculos de Apolônio inteiros. Os empacotamentos com n = 4 já
foram chamados de empacotamentos de 3-círculos de Apolônio inteiros [3]. Isso porque
podem ser construídos adicionando-se 3 círculos de cada vez. Por exemplo, no caso de
S4[−2, 16; 3, 6, 11, 8], podemos começar com os 3 círculos −2, 3, 6, depois adicionar 8, 11,
16, depois adicionar 14, 19, 24, etc.
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Figura 11: Empacotamento de Apolônio baseado em uma corrente de Steiner de 6 círculos
S6[−2, 10; 3, 6, 15, 21, 18, 9].
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Olimpíadas ao redor do mundo

A partir desta edição está de volta a seção Olimpíadas ao redor do mundo, um
espaço onde o leitor terá a oportunidade de conhecer alguns problemas de destaque
em diversas olimpíadas pelo mundo afora. Convidamos os leitores a enviar soluções.
Nas próximas edições também estará de volta a seção "Como é que faz?", onde serão
publicadas as soluções corretas dos problemas desta seção e outros que forem enviados
por nossos leitores. As soluções dos problemas desta seção devem ser enviadas para o
email (contato@associacaodaobm.org).

1. (MATHCOUNTS) Se a, b e c são números inteiros positivos tais que

1

a
+

1

b
+

1

c
=

6

7
,

qual é o valor de a+ b+ c?

2. (USAMO-2019) Seja N o conjunto dos inteiros positivos. Considere C o conjunto
de todas as funções f : N→ N que satisfazem a equação

f(f(. . . f︸ ︷︷ ︸
f(n) vezes

(n) . . .)) =
n2

f(f(n))

para todos os inteiros positivos n.

(a) Mostre que todas as funções em C são injetivas.
(b) Existe alguma função em C tal que f(2020) = 2021?
(c) Encontre uma função em C tal que f(2020) = 1000.

3. (VJIMC 2019) Seja M uma matriz invertível n × n tal que suas entradas são
números inteiros. Definimos a sequência SM = {Mi}

∞
i=0 pela recorrência M0 = M,

Mi+1 = (MT
i )

−1Mi para i ≥ 0.
Encontre o menor inteiro n ≥ 2 para o qual existe uma matriz normal com entradas
inteiras e tamanho n×n tal que a sua sequência SM não é constante e tem período
P = 7, isto é, Mi = Mi+7. (MT é a matriz transposta de M. Uma matriz quadrada
M é tida como normal se MTM = MMT ).

4. (China) Sejam a, b, c números reais positivos. Prove que

(a+ b)(b+ c)(a+ b+ c) ≥ 5
√
5+ 11

2
abc.
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5. (França) Sejam a, b números naturais tais que:

4a2 + a = 3b2 + b.

Mostre que b− a é um quadrado perfeito.

6. (Berkeley) Suponha que z0, z1, ..., zn−1 são números complexos tais que zk =
e2kπi/2 para k = 0, 1, 2, ..., n− 1. Prove para qualquer número complexo z, tem-se
que

n−1∑
k=0

|z− zk| ≥ n.

7. (Albânia) É dado um triângulo ABC cujo circuncentro é o ponto O e o seu ortocentro
é o ponto H. Se AO = AH determine a medida do ângulo ∠BAC.

8. (Singapura) Para a, b, c, d ≥ 0 tais que a+ b = c+ d = 2, prove que:

(a2 + c2)(a2 + d2)(b2 + c2)(b2 + d2) ≤ 25.

9. (Romênia) Determine todas as funções f : R −→ R que satisfazem a relação

f
(
x3 + y3

)
= xf

(
y2
)
+ yf

(
x2
)
,

para quaisquer números reais x, y.

10. (AIME-2020) Seja P um ponto escolhido aleatoriamente no interior de um quadrado
unitário de vértices (0, 0), (1, 0), (1, 1), e (0, 1). A probabilidade de que a inclinação
da linha determinada por P e o ponto

(
5
8
, 3
8

)
é maior ou igual a 1

2
pode ser escrito

como m
n

, onde m e n são relativamente inteiros primos. Determine m+ n.



Problemas propostos e soluções

Publicamos aqui algumas das respostas dos problemas da Eureka! 37 a 39 que foram
enviadas por nossos leitores.

Solução dos Problemas Propostos Eureka! - 37

157. Sejam x e y inteiros positivos tais que x2
n

− 1 é divisível por 2ny + 1 para todo
inteiro positivo n. Prove que x = 1.

Solução: Suponha por absurdo que x > 1. Escreva y = 2rz, com r ∈ N e z ímpar. Seja Q
o produto de todos os primos q < x2 tais que q ≡ 3 (mod 4) e q não divide 2z+ 1, e seja
n = 1+(r+1)φ((2z+1)2Q) ≥ r+2. Como 2(r+1)φ((2z+1)2Q) ≡ 1 (mod (2z+1)2Q), segue
que 2n−ry+1 = 2nz+1 = 2(r+1)φ((2y+1)2Q) ·(2z+1) ≡ 2z+1 (mod (2z+1)2Q). Assim,
2z+1|2n−ry+1 e, se q é um fator primo de Q, como q não divide 2z+1, segue que q não
divide 2n−ry+1. Escrevendo 2n−ry+1 = (2z+1)m, como 2n−ry+1 = 2nz+1 ≡ 2z+1
(mod (2z + 1)2), segue que m ≡ 1 (mod 2z + 1), e, em particular, mdc(m, 2z + 1)=1.
Como 2nz+ 1 ≡ 1 (mod 4) e 2nz+ 1 = 2n−ry+ 1 = (2z+ 1)m, temos m ≡ 3 (mod 4),
pois, como z é ímpar, 2z + 1 ≡ 3 (mod 4). Em particular, m tem algum fator primo
q̃ ≡ 3 (mod 4), e como q̃ não pode ser fator primo de 2z + 1 nem de Q, segue que
q̃ ≥ x2. Por outro lado, como 2n−ry+1 divide x2

n−r

−1, temos em particular x2n−r ≡ 1
(mod q̃). Como também temos xq̃−1 ≡ 1 (mod q̃), segue que, se d é a ordem de
x módulo q̃ (isto é, o menor inteiro positivo k tal que xk ≡ 1 (mod q̃)), temos que
d|mdc(2n−r, q̃− 1). Por outro lado, como q̃ ≡ 3 (mod 4), temos que q̃− 1 ≡ 2 (mod 4),
e portanto mdc(2n−r, q̃− 1) = 2. Assim, d|2, donde x2 ≡ 1 (mod q̃), ou seja, q̃|x2 − 1,
absurdo, pois q̃ ≥ x2.

158. Ache todas as funções f : R→ R tais que

f(xy+ 1) = f(x+ y) + f(x)f(y), ∀x, y ∈ R.

Solução:
Fazendo x = y = 1, obtemos f(2) = f(2) + f(1)2, donde f(1) = 0, e, fazendo y = 0,

obtemos 0 = f(1) = f(x) + f(x)f(0), donde, ou f é identicamente nula, ou f(0) = −1.
Caso i) f(−1) não é 0. Seja g(x) = f(x + 1). Então f(x) = g(x − 1), e a equação

funcional fica g(xy) = g(x+ y− 1) + g(x− 1)g(y− 1), para quaisquer x, y reais. Temos
g(0) = f(1) = 0 e g(−1) = f(0) = −1. Além disso, g(−2) = f(−1) não é 0. Fazendo
x = 2 e y = −1, obtemos g(−2) = g(0) + g(1)g(−2) = g(1)g(−2), donde g(1) = 1.
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Fazendo y = 2, obtemos g(2x) = g(x+ 1)+g(x− 1)g(1) = g(x+ 1)+g(x− 1), para todo
x. Fazendo y = −1, obtemos g(−x) = g(x− 2) + g(−2)g(x− 1) = g(x− 2) + c.g(x− 1),
onde c := g(−2). Trocando x por −x, obtemos g(x) = g(−(x + 2)) + c.g(−(x + 1)) =
g(x) + c.g(x+ 1) + c(g(x− 1) + c.g(x)), donde 0 = g(x+ 1) + g(x− 1) + c.g(x). Como
g(−(x + 1)) = g(x − 1) + c.g(x), temos 0 = g(x + 1) + g(−(x + 1)) = 0, ou seja,
g(y) + g(−y) = 0 para todo y. Trocando (x, y) por (−x,−y), obtemos g(xy) = g(−x−
y−1)+g(−x−1)g(−y−1) = −g(x+y+1)+g(x+1)g(y+1). Da equação funcional de g,
temos g((x+2)(y+2)) = g(x+y+3)+g(x+1)g(y+1). Portanto, g(xy)+g(x+y+1) =
g(x + 1)g(y + 1) = g((x + 2)(y + 2)) − g(x + y + 3), donde g(xy + 2x + 2y + 4) =
g((x+ 2)(y+ 2)) = g(xy)+g(x+y+ 1)+g(x+y+ 3) = g(xy)+g(2x+ 2y+ 4) (usando
a identidade g(2u) = g(u+ 1) + g(u− 1) para u = x+ y+ 2).

Vamos usar isso para mostrar que g(u+v) = g(u)+g(v) para quaisquer u, v reais. De
fato, fazendo y = −x, obtemos −g(x2−4) = g(−x2+4) = g(−x2)+g(4) = −g(x2)+g(4),
e logo g(x2 − 4) = g(x2) − g(4), que, junto com g(−x2 + 4) = g(−x2) + g(4) implicam
que g(z + 4) = g(z) + g(4) para todo z real, Daí segue por uma indução simples que
g(z+ 4k) = g(z) + k.g(4), para todo z real e todo k natural. Dados u e v reais, podemos
escolher k natural tal que (v+4k−4

2
)2 > 4u, e o sistema 2x + 2y + 4 = v + 4k, xy = u

terá solução real x, y, donde g(u+ v) + k.g(4) = g(u+ v+ 4k) = g(xy+ 2x+ 2y+ 4) =
g(xy) + g(2x + 2y + 4) = g(u) + g(v + 4k) = g(u) + g(v) + k.g(4), e logo g(u + v) =
g(u)+g(v). Usando isso (e g(1) = 1) em g(xy) = g(x+y−1)+g(x−1)g(y−1), obtemos
g(xy) = g(x)+g(y)−1+(g(x)−1)(g(y)−1), ou seja, g(xy) = g(x)g(y), para quaisquer
x, y reais. Daí segue que g(x) = x para todo x real. De fato, g(k) = k.g(1) = k para todo
k natural, e, como g(−x) = −g(x) para todo x, segue que g(k) = k para todo k inteiro;
se p e q são inteiros e q > 0, p = g(p) = g(q.p/q) = q.g(p/q), donde g(p/q) = p/q.
Suponha por absurdo que para algum x real g(x) não seja igual a x; digamos que g(x) < x.
Tome p/q um racional com g(x) < p/q = g(p/q) < x, donde, como x−p/q > 0, teríamos
0 ≤ g(

√
x− p/q)2 = g

(
(
√
x− p/q)2

)
= g(x − p/q) = g(x) − g(p/q) < 0, absurdo.

O caso g(x) > x é análogo. Portanto f(x) = g(x − 1) = x − 1 para todo x real, o que
claramente é uma solução.

Caso ii) f(−1) = 0. É claro que f identicamente nula dá uma solução. Suponhamos
que não seja o caso. Então f(0) = −1 (e f(1) = 0). Fazendo y = −1 em f(xy + 1) =
f(x+ y) + f(x)f(y), obtemos f(1− x) = f(x− 1) para todo x real, ou seja, f(−z) = f(z)
para todo z real. Fazendo y = −x, temos f(x2 − 1) = f(1 − x2) = f(0) + f(x)f(−x) =
f(0) + f(x)2 ≥ f(0). Assim, se z ≥ −1, f(z) ≥ f(0). Trocando y por −y, temos
f(xy−1) = f(1−xy) = f(x−y)+f(x)f(−y) = f(x−y)+f(x)f(y). Subtraindo de f(xy+1) =
f(x+y)+ f(x)f(y), temos f(xy+ 1)− f(xy− 1) = f(x+y)− f(x−y). Assim, se uv = xy,
temos f(x+y)−f(x−y) = f(xy+1)−f(xy−1) = f(uv+1)−f(uv−1) = f(u+v)−f(u−v).
Seja h a função definida nos reais não-negativos por h(x) = f(

√
x) − f(0) ≥ 0. Para

x, y ≥ 0, temos h(x+y)−h(x) = f(
√
x+ y)−f(

√
x) = f(

√
y)−f(0) = h(y) (pois, fazendo

r = (
√
x+ y +

√
x)/2, s = (

√
x+ y −

√
x)/2 e u = v =

√
y/2, temos r + s =

√
x+ y,

r − s =
√
x, u + v =

√
y, u − v = 0 e rs = y/4 = uv. Assim, para quaisquer x, y ≥ 0
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temos h(x+y) = h(x)+h(y). Como h(1) = f(1)− f(0) = 1, e h(x) ≥ 0, para todo x ≥ 0
temos, como no caso i), h(x) = x para todo x ≥ 0, ou seja, f(

√
x) − f(0) = x, para todo

x ≥ 0. Assim, f(y) − f(0) = y2, para todo y ≥ 0, donde f(y) = y2 + f(0) = y2 − 1 para
todo y ≥ 0. Como, para y < 0, f(y) = f(−y) = (−y)2 − 1 = y2 − 1, temos f(y) = y2 − 1
para todo y real, função esta que satisfaz a equação funcional.

Assim, temos nesse caso f(x) = 0 para todo x real ou f(x) = x2 − 1 para todo x real.

159. Dizemos que un conjunto A ⊂ N é progressista se, sempre que x, y ∈ A com x ≤ y,
temos 2y− x ∈ A. Prove que se A é progressista e x, x+ a1, x+ a2, . . . , x+ ak ∈ A com
k ≥ 2 e 0 < a1 < a2 < · · · < ak então x + a1 + ak − 3d, x + a1 + ak − 2d ∈ A, onde
d = mdc(a1, a2, . . . , ak).

Solução: Substituindo x por x+ 2a1, temos un problema análogo, onde o novo menor
elemento é x + a1. O mdc não muda, pois mdc(a1, a2 − a1, a3 − a1, . . . , ak − a1) =
mdc(a1, a2, . . . , ak), a expressão correspondente a x+ a1 + ak = (x+ a1) + (x+ ak) − x
não aumenta pois x + a1 + ak = (x + 2a1) + (x + ak) − (x + a1) não aumenta, mas o
diâmetro (diferença entre o maior e o menor elemento da lista), que era ak, e agora é
o máximo entre a1 e ak − a1, diminui. O número de elementos da lista não aumenta,
mas pode diminuir, pois 2a1 pode ser igual a algum aj com j > 1. Todos os números
que aparecem são da forma x + kd, com k natural. Repetindo esse procedimento, em
algum momento haverá apenas dois números na lista (pois o diâmetro não pode diminuir
indefinidamente), e imediatamente antes os números devem ser y, y + d, y + 2d, com
y+ 3d = (y+ d) + (y+ 2d) − y ≤ x+ a1 + ak, e logo y ≤ x+ a1 + ak − 3d é tal que y
e y+ d pertenecem a A, o que resolve o problema.

160. Considere a sequência definida por an = ⌊n
√
2003⌋ para n ≥ 1. Prove que, para

quaisquer inteiros positivos m e p, a sequência contém m elementos em uma progressão
geométrica de razão maior que p.

Solução: Como 442 < 2023 < 452, segue que
√
2023 é irracional, pois não é inteiro, e,

se fosse da forma p/q, com p, q inteiros, q > 1 e mdc(p, q) = 1, teríamos, elevando ao
quadrado, 2023 = p2/q2, absurdo, pois a fração p2/q2 é irredutível e q2 > 1.

Vamos provar que, se α > 0 é irracional, então, dado um inteiro positivo N, existem
inteiros positivos q, r tais que r < qα < r + 1

N
. Dado N ∈ N, consideramos os N + 1

elementos de [0, 1) da forma {jα} := jα− ⌊jα⌋ (parte fracionária de jα), com 0 ≤ j ≤ N.
Como [0, 1) =

⋃N−1
k=0

[
k
N
, k+1

N

)
, existem dois desses elementos, digamos {j1α} e {j2α} num

mesmo intervalo
[
k
N
, k+1

N

)
e, portanto, se j1 < j2, k = j2 − j1 > 0 e s = ⌊j2α⌋ − ⌊j1α⌋,

temos 0 < |kα − s| < 1
N
. Se qα − s > 0, basta tomar r = s e q = k. Já se qα − s < 0,

escrevemos kα = s− ε, com 0 < ε < 1
N

. Seja M ∈ N tal que Mε < 1 ≤ (M+ 1)ε. Temos
então 1−Mε ≤ ε < 1

N
, donde Mkα = Ms−Mε = Ms− 1+ (1−Mε), e basta tomar

r = Ms− 1 e q = Mk.
Tomamos α =

√
2003 e N = (p + 1)m. Existem então inteiros positivos q, r tais

que r < q
√
2003 < r + 1

N
. Portanto, para t inteiro com 1 ≤ t ≤ N = (p + 1)m, temos
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⌊tq
√
2003⌋ = tr. Tomando t = (p + 1)n, com 1 ≤ n ≤ m, obtemos a progressão

geométrica desejada.

161. Um sapo faz um caminho infinito no plano euclidiano da seguinte forma: no início ele
está no ponto (0, 0), e, se num dado momento está no ponto (x, y), no segundo seguinte
salta para o ponto (x + 1, y) ou para o ponto (x, y + 1). Prova que, para todo inteiro
positivo n, existe uma reta l tal que o sapo passa por pelo menos n pontos de l em seu
caminho.

Solução: Seja (xk, yk) a posição do sapo após k passos. Temos xk+yk = k, ∀k ∈ N. Dado
um inteiro k ≥ 1, sejam ak = min{⌊2kxn

n
⌋, n ≥ k e bk = max{⌈2kxn

n
⌉, n ≥ k. Assim, o

intervalo Ik = [ak

2k ,
bk

2k ] é o menor intervalo cujos extremos são recionais com denominador
2k que contém os valores de xn

n
= xn

xn+yn
para todo n ≥ k; temos Ik ⊃ Ik+1, ∀k ≥ 1, ou

seja, os Ik formam uma família de intervalos encaixados. Temos então ∩k≥1Ik = [c, d]
para certos c, d com 0 ≤ c ≤ d ≤ 1. Temos dois casos:

i) c = d. Nesse caso, como na solução do problema 160, existem p, q ∈ N com
q > 0 e 0 ≤ p ≤ q tais que 0 ≤ qc − p < 1

6n
(a solução do problema 160 trata do

caso em que c é irracional, e o caso em que c = p
q

é trivial). Existe m0 ≥ 1 tal que
|xm

m
− c| < 1

6nq
para todo m ≥ m0. Temos |qxm − p(xm + ym)| = |qxm − pm| =

m|qxm

m
− p| ≤ m|qc − p| + mq|xm

m
− c| < m

6n
+ m

6n
= m

3n
. Dado M > m0, existem

M−m0 + 1 valores de m com m0 ≤ m ≤ M, para os quais |qxm − p(xm + ym)| assume
no máximo 1+ 2M

3n
valores distintos, de modo que algum valor s deve ser assumido pelo

menos
M−m0 + 1

1+ 2M
3n

> n

valores distintos para M grande (de fato basta tomar M = 3(n+m0)). Assim, haverá
pelo menos n pontos percorridos pelo sapo na reta qx− p(x+ y) = s.

ii) c < d. Nesse caso, escolha um racional p
q

com c < p
q
< d. Segue da definição

de c e d que xm

m
− p

q
, (e logo também qxm − pm = qxm − p(xm + ym)) troca de sinal

infinitas vezes. Como, para todo m ≥ 1, |qxm − p(xm + ym) − (qxm+1 − p(xm+1 +
ym+1))| ≤ max{p, q} = q, se qxm − p(xm + ym) e qxm+1 − p(xm+1 + ym+1) têm sinais
distintos, temos |qxm − p(xm + ym)| ≤ q, e portanto, para algum inteiro s com |s| ≤ q,
qxm − p(xm + ym) = s para infinitos valores de m, o que resolve o problema.

162. Uma prova da IMO tem 6 problemas, e cada problema de cada participante recebe
uma nota inteira n com 0 ≤ n ≤ 7. Dizemos que duas provas de dois participantes são
comparáveis se uma delas, digamos a do participante A é menor ou igual à prova do
participante B, no seguinte sentido: em cada um dos 6 problemas a nota do participante
A é menor ou igual à nota do participante B. Determine o menor inteiro positivo m
tal que, se houver m participantes numa IMO, necessariamente haverá duas provas
comparáveis.
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Solução: Vamos considerar uma situação mais geral em que há k ≥ 1 questões, e, para
1 ≤ j ≤ k, a questão j vale nj pontos, i.e., a nota da questão j pertence a {0, 1, 2, . . . , nj}.
Assim, o conjunto das provas (ou, mais precisamente, das pontuações) possíveis é
X =
∏k

j=1{0, 1, 2, . . . , nj}. Dada uma prova P = (m1,m2, . . . ,mj) ∈ X, sua nota total é
n(P) =

∑k
j=1 mk. Um subconjunto C ⊂ X é uma cadeia se duas provas quaisquer em C

são comparáveis (no sentido do enunciado); é uma cadeia lenta se existem inteiros a ≤ b
tais que {n(P), P ∈ C} = [a, b] ∩ Z, e é uma cadeia simétrica lenta se tais inteiros a, b

satisfazem a+ b =
∑k

j=1 nj (que é a nota máxima da prova, ou seja, se a nota média da
cadeia lenta é metade da nota máxima).

Vamos provar por indução em k que X sempre pode ser decomposto como uma
união disjunta de cadeias simétricas lentas. O caso k = 1 é trivial: X é uma cadeia
simétrica lenta nesse caso. Para fazer o passo de indução, basta provar que, se C =
{P1 < P2 < · · · < Pm} é uma cadeia simétrica lenta, então é possível decompor C ×
{0, 1, 2, . . . , nk+1} como uma união disjunta de cadeias simétricas lentas. Isso pode ser
provado por indução em m, tomando uma das novas cadeias simétricas lentas como
(P1, 0), (P1, 1), . . . , (P1, nk+1), (P2, nk+1), . . . , (Pm, nk+1), sobrando {P2, P3, . . . , Pm} ×
{0, 1, . . . , nk+1 − 1} para decompor como união de cadeias simétricas lentas, o que é
possível pela hipótese de indução.

Assim, o conjunto das provas da IMO pode ser decomposto como uma união de
cadeias simétricas lentas. Se todas as provas de um conjunto são incomparáveis, há no
máximo uma dessas provas em cada cadeia simétrica lenta, e logo o número de provas
no conjunto é no máximo o número de cadeias na decomposição. Por outro lado, cada
cadeia simétrica lenta contém exatamente uma prova com nota total 21, de modo que o
conjunto tem no máximo N elementos, onde N é o número de provas com nota total 21,
e como duas provas distintas com nota total 21 são sempre incomparáveis, a resposta é
N+ 1. Basta agora calcular N.

O número de soluções de x1 + x2 + x3 + x4 + x5 + x6 = 21 com xj ≥ 0, ∀j ≤ 6 é(
26
5

)
. Se, para j ≤ 6, Xj é o conjunto de tais (x1, . . . , x6) com xj ≥ 8, queremos excluir a

união dos Xj. Como não pode haver três valores de xj ≥ 8 (pois a soma dos xi é 21),
o número de elementos da união dos Xj é

∑
j≤6 |Xj| −

∑
1≤i<j≤6 |Xi ∩ Xj|. Escrevendo

xj = 8 + yj para as soluções em Xj, segue que |Xj| =
(
18
5

)
para j ≤ 6 e |Xi ∩ Xj| =

(
10
5

)
para 1 ≤ i < j ≤ 6. Assim, N =

(
26
5

)
−6
(
18
5

)
+
(
6
2

)(
10
5

)
= 18152, e a resposta do problema

é N+ 1 = 18153.

Solução dos Problemas Propostos Eureka! - 39

163. A equação quadrática x2−3x+q = 0 possui duas raízes α e β. Se α3+β3 = −81.
Determine o valor de q.

Solução: Temos que x2−3x+q = 0. Como α e β são suas duas raízes, podemos escrever
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a equação como (x− α)(x− β) = 0. Dessa forma, obtemos as duas relações a seguir:

α+ β = 3 e αβ = q (1)

Elevando a primeira relação ao cubo temos que

27 = (α+ β)3 = α3 + β3 + 3αβ(α+ β),

desta forma 27 = −81+ 3αβ · 3 e portanto αβ =
108

9
= 12.

164. Em um triângulo ABC sejam D e E pontos sobre os lados BC e AC, respectiva-
mente, tais que AB = BD = AE. Se ∠BAE = 60◦ e DE = DC, determine a medida do
ângulo ∠EDC.
Solução: Primeiro, vamos nomear os ângulos de acordo com a figura abaixo:

A CE

D

B

60◦

θ

α
β

ϕ

γ

Observemos que ∠DEC = β, pois DEC é um triângulo isósceles. Se traçarmos um
segmento que liga B a E obtemos dois novos triângulos, ABE e BED. Eles também
são isósceles, sendo que o fato de ∠BAE ser de 60◦ implica em ABE ser um triângulo
equilátero.

A CE

D

B

60◦ α
ββ

60◦

60◦

γ
γ
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Dessa maneira, BE = AB = BD, o que implica que o triângulo EBD é isósceles com
γ := ∠EDB = ∠DEB = 180− α. Agora, observemos que

180 = 60+ γ+ β e 180 = 2β+ α.

Substituindo a relação que temos para γ na primeira equação acima temos que β = α−60
e, por fim, substituindo na segunda, 180 = 3α− 120, o que nos dá

α = 100◦.

165. Seja A um subconjunto de 84 elementos do conjunto {1, 2, 3, . . . , 169} tal que
em A não existem dois elementos cuja soma é 169. Prove que A possui pelo menos um
quadrado perfeito.
Solução: Se 169 pertence a A o problema está resolvido, assim podemos supor que não
pertence. Observemos que a única forma de escrever 169 como soma de dois quadrados
é 169 = 52 + 122. Suponhamos que o conjunto A não possui nenhum quadrado, em
particular o conjunto B = A ∪ {52} não possui dois números tais que sua soma seja 169.
Agora, consideremos os 84 conjuntos

{1, 168}, {2, 167}, . . . , {84, 85}.

Como B pode ter no máximo um elemento em comum com cada um desses conjuntos,
segue que B tem no máximo 84 elementos, o que é contraditório.

Uma pergunta interessante é se podemos trocar 84 por um número menor, ou
equivalentemente podemos transformar a pergunta na seguinte: Qual é o menor valor
de n tal que se temos um subconjunto de {1, 2, . . . , 169} com n elementos tais que não
existem dois elementos em A com soma igual a 169, então A possui pelo menos um
quadrado.

166. É possível encontrar 2005 quadrados perfeitos diferentes tais que sua soma
também é um quadrado perfeito?
Solução: Primeiro, observe que para qualquer n par, existem s e t naturais tais que
n2 = s2 − t2. Isso ocorre pois, da igualdade obtemos n2 = (s+ t)(s− t) e, como n é par,
n2

2
é natural o que permite tomar s+ t =

n2

2
e s− t = 2, e, portanto, possíveis valores

que satisfazem a relação são

s =
n2

2
+ 2

2
e t =

n2

2
− 2

2
,

que números naturais. Observemos que no caso que n seja ímpar, também é possível
fazer um processo similar obtendo que

n2 =

(
n2 + 1

2

)2

−

(
n2 − 1

2

)2

.
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Sendo assim, dada uma soma de quadrados perfeitos que gera um quadrado perfeito

a2
1 + a2

2 + · · · + a2
k = n2,

se n é par podemos realizar o processo anterior, obtendo uma soma com k+ 1 elementos,
agora, se n não é par, multiplicamos a equação por 4 dos dois lados, ficando com (2n)2,
o que permite realizar o processo desejado. Dessa forma, a partir de uma expressão como
32 + 42 = 52 é possível encontrar 2005 quadrados perfeitos cuja soma seja um quadrado
perfeito.

Uma segunda solução, pode ser obtida de forma indutiva da seguinte forma: Se n é
soma de k quadrado, digamos

a2
1 + a2

2 + · · · + a2
k = n2,

como (3n)2 + (4n)2 = (5n)2, segue que usando estas duas últimas equações obtemos que

(3a1)
2 + (3a2)

2 + · · · + (3ak)
2 + (4n)2 = (5n)2

isto é, (5n)2 é soma de k+ 1 quadrados.

167. Prove que n2 + 1

⌊n⌋2 + 2
não é inteiro para nenhum n ∈ N.

Solução: O problema é trivial com o enunciado original, pois o numerador sempre é
menor que o denominador. Se no enunciado permitimos que o n seja um número real,
neste caso o quociente é igual a 1 para infinitos valores de n. O problema é interessante
e correto supondo que n pode assumir valores racionais.

Suponhamos que n é um número racional, assim ele pode ser escrito como n = m+ a
b

,
onde n, a, b são números inteiros, com 0 < a < b e primos entre si. Como o quociente
n2 + 1

⌊a⌋2 + 2
sempre está entre 0 e 2, a única possibilidade para ser inteiro é que seja igual a

1. Assim (
m+

a

b

)2
+ 1 = m2 + 2.

Expandindo obtemos que 2
am

b
+

a2

b2
+ 1 = 2 e multiplicando por b2 obtemos que

2amb+ a2 = b2.

Desta igualdade segue que a2 = b(b− 2am), logo b divide a2 o que é contraditório.

168. Determine todas as funções ∗ : Q→ Q que são comutativas, associativas e satisfazem
0 ∗ 0 = 0 e (x ∗ c) ∗ (y ∗ c) = (x ∗ y) + c, ∀x, y, c ∈ Q.

Solução: Seja f(x) = x∗0. Temos f(0) = 0 e x∗y = (x−y+y)∗(0+y) = (x−y)∗0+y =
f(x− y) + y, ∀x, y ∈ Q. A condição de ∗ ser comutativa se escreve como y+ f(x− y) =
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x ∗y = y ∗ x = x+ f(y− x), ou seja, f(y− x) = y− x+ f(x−y),∀x, y ∈ Q, o que equivale
a f(z) = z+ f(−z), ∀z ∈ Q. A associatividade se escreve como z+ f(y− z+ f(x− y)) =
z+f(x∗y−z) = (x∗y)∗z = x∗(y∗z) = (y∗z)+f(x−(y∗z)) = z+f(y−z)+f(x−z−f(y−z)),
ou seja, f(y−z+f(x−y)) = f(y−z)+f(x−z−f(y−z)), que equivale (fazendo u = x−y
e v = y − z) a f(v + f(u)) = f(v) + f(u + v − f(v)),∀u, v ∈ Q. Fazendo v = 0 obtemos
f(f(u)) = f(u),∀u ∈ Q. Seja I a imagem da função f. Então f(y) = y ⇐⇒ y ∈ I. Por
outro lado, como f(y) = y+ f(−y), temos y ∈ I ⇐⇒ f(y) = y ⇐⇒ f(−y) = 0. Além
disso, dados v, z ∈ Q, fazendo u = z+f(v)−v, temos f(v)+f(z) = f(v)+f(u+v−f(v)) =
f(v + f(u)), ou seja, I + I ⊂ I (i.e., se r, s ∈ I então r + s ∈ I). Daí segue por indução
que se r ∈ I e n ∈ N então nr ∈ I. Não podemos ter dois elementos em I com sinais
contrários: se r = p/q > 0 e s = −m/n < 0 pertencessem a I (com p, q,m,n > 0),
teríamos pm = qmr ∈ I e −pm = pns ∈ I, mas então f(pm) = pm, donde f(−pm) = 0,
mas devemos ter f(−pm) = −pm, absurdo. Assim, I ⊂ Q+ = {x ∈ Q; x ≥ 0} ou
I ⊂ Q− = {x ∈ Q; x ≤ 0}. Não há perda de generalidade em supor que I ⊂ Q+. De
fato, se f satisfaz as condições acima, a função g(x) = −f(−x) também satisfaz: temos
g(0) = 0, g(z) = −f(−z) = z−f(z) = z+g(−z),∀z ∈ Q e g(v+g(u)) = −f(−(v+g(u))) =
−f(−v+ f(−u)) = −(f(−v) + f(−u− v− f(−v))) = g(v) + g(u+ v− g(v)). Assim, se a
imagem de f está contida em Q−, então a imagem de g está contida em Q+.

Vamos então supor que a imagem I de f está contida em Q+. Vamos provar que
I = Q+, e portanto f(x) = max{x, 0},∀x ∈ Q, o que implica x∗y = f(x−y)+y = max{x−
y, 0} + y = max{x, y},∀x, y ∈ Q, o que é uma solução (no caso em que I ⊂ Q− temos
g(x) = −f(−x) = max{x, 0},∀x ∈ Q, donde f(x) = −max{−x, 0} = min{x, 0}, ∀x ∈ Q, e
x ∗ y = f(x − y) + y = min{x − y, 0} + y = min{x, y},∀x, y ∈ Q, o que também é uma
solução).

Como f(1) = 1 + f(−1), temos f(1) ̸= 0 ou f(−1) ̸= 0. Escolhendo a ∈ {−1, 1}
tal que f(a) ̸= 0, teremos f(a) > 0, Escrevendo f(a) = m/n, com m e n inteiros
positivos, temos m/n ∈ I, donde m = n.m/n ∈ I. Suponha que existe y > 0 tal
que y /∈ I. Em particular f(y) ̸= y. Assim, d = f(y) − y ̸= 0, e d = f(−y) ∈ I.
Em particular d > 0. Escrevamos f(y) = a/u e f(−y) = b/v, com a, u, b, v inteiros
positivos. Como f(y) = a/u e f(−y) = b/v pertencem a I, (muv − 1)f(−y) + f(y) =
mub+f(y)−f(−y) = mub+y ∈ I. Assim, para 0 ≤ j ≤ muv−1, temos j(mub+y) ∈ I e
(muv−1)mub+jy = (muv−1−j)mub+j(mub+y) ∈ I, donde f((muv−1)mub+jy) =
(muv−1)mub+ jy para 0 ≤ j ≤ muv−1. Note agora que, se f(z) = z e f(z+y) = z+y
então z+ y = f(z+ y) = f(y+ f(z)) = f(y) + f(y+ z− f(y)) = y+ d+ f(z− d), donde
f(z − d) = z − d. Assim, se f(z + jy) = z + jy para 0 ≤ j ≤ muv − 1, para j = 0
obtemos f(z) = z, donde z ∈ I e z + muvy = z + m(av − bu) ∈ I. Da observação
anterior, segue que f(z − d + jy) = z − d + jy para 0 ≤ j ≤ muv − 1. Por indução
segue que f(z − kd + jy) = z − kd + jy para todo k ∈ N e 0 ≤ j ≤ muv − 1. Em
particular, para j = 0, temos f(z− kd) = z− kd para todo k ∈ N. Como já mostramos
que f((muv − 1)mub + jy) = (muv − 1)mub + jy para 0 ≤ j ≤ muv − 1, segue que
f((muv − 1)mub − kd) = (muv − 1)mub − kd para todo k ∈ N, mas, como d > 0,
podemos tomar k ∈ N tal que t = (muv − 1)mub − kd < 0, o que é uma contradição,
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pois teríamos f(t) = t ∈ I, mas I ⊂ Q+, absurdo.
Assim, as duas operações que satisfazem as condições do enunciado são x ∗ y =

max{x, y}, ∀x, y ∈ Q e x ∗ y = min{x, y},∀x, y ∈ Q.

As resoluções dos problemas 157 a 168 foram sugeridas pelo professor
Carlos Gustavo Tamm de Araújo Moreira (Gugu) - IMPA.



Problemas propostos

Convidamos o leitor a enviar soluções dos problemas propostos e sugestões de novos
problemas para próximos números. (As soluções devem ser enviadas para o email con-
tato@associacaodaobm.org).

169. Qual o menor número de operações necessárias para chegar ao número 25
partindo do número 11 utilizando apenas a multiplicação por 2 e a subtração de 3?

170. Seja r a raiz de maior módulo do polinômio P(x) = x4 + 3x3 − 3x2 + 3x − 1.
Determine inteiro mais próximo de r7.

171. Considere a equação x6 + 5x5 + 4x4 + 4x2 + 5x+ 1 = 0. Se uma das raízes da
equação é w ̸= −1, qual o valor de 3w4 + 9w3 − 9w2 + 9w+ 4?

172. Sejam a, b e c números reais positivos tais que

a+ b+ c+ ab+ bc+ ca+ abc = 7.

Prove que
√
a2 + b2 + 2+

√
b2 + c2 + 2+

√
c2 + a2 + 2 ≥ 6.

173. Seja △ABC um triângulo com incentro I. Os pontos P e Q foram escolhidos
sobre os segmentos BI e CI de tal forma que ∠BAQ é o dobro de ∠PAQ. Se D é o ponto
de contato do incírculo com o lado BC, prove que ∠PDQ = 90o.

174. Em um triângulo acutângulo ABC que tem circuncírculo de centro O, sejam
D e E pontos sobre AB e AC respectivamente, tais que DE e AO são perpendiculares.
Seja K um ponto sobre a reta BC diferente do ponto de interseção de AO com BC. A
reta AK corta o circuncírculo de ADE em L, um ponto diferente de A. Seja M o ponto
simétrico de A com respeito à linha DE. Mostre que K, L, M e O formam um quadrilátero
concíclico.
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175. Quatro circunferências de raio 1 com centro em A, B, C e D estão no plano de tal
forma que cada circunferência é tangente a duas das outras. Uma quinta circunferência
passa pelos centro de duas das circunferências e é tangente às outras duas. Encontrar os
possíveis valores para a área do quadrilátero ABCD.

176. Mostre que
∫π
0

1

1+ 2023cosx
dx =

π

2
.

177. Mostre que a matriz

A =


20212021 2022022 20242024 20262026 20282028 20302030
20212032 2022021 20242026 20262028 20282024 20302032
20212024 2022032 20242021 20262026 20282028 20302022
20212028 2022026 20242024 20262021 20282022 20302032
20212028 2022026 20242024 20262022 20282021 20302032
20212028 2022026 20242024 20262022 20282032 20302021


é invertível.

178. Euler provou que
∞∑

n=1

1

n2
=

π2

6
. Sendo P = {2, 3, 5, 7, 11, 13, . . .}, o conjunto dos

números primos, determine o valor
∏
p∈P

p2

p2 − 1

179. Se n > 2 é um inteiro, mostre que pelo menos um entre os números 2n − 1 e
2n + 1 não é primo.

180. Sejam a, b, c, x, y e z números inteiros tais que

ax5 + by5 + cz5 > ax+ by+ cz.

Mostre que ax5 + by5 + cz5 ≥ ax+ by+ cz+ 30.

181. Prove que existe um número real α > 1 tal que, para todo inteiro positivo n,
{αn} = αn − ⌊αn⌋ ∈ (1/3, 2/3) e, além disso, ⌊αn⌋ é par se, e somente se, n é primo.

Os problemas 169 a 174 foram enviados pelo professor Fábio Brocheiro -
UFMG; 175 a 180 foram propostos por Carlos A. Gomes - UFRN ; o problema
181 por Carlos Gustavo Tamm de Araújo Moreira (Gugu) - IMPA.
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Alex Cabral Barbosa IFF CAMPO DOS GOYTACAZES
Jones Colombo - NITERÓI
Leonardo Augusto Zão IME RIO DE JANEIRO
Luis Humberto Guillermo Felipe - CAMPO DOS GOYTACAZES
Nara Bobko - RIO DE JANEIRO
Rafael Filipe dos Santos COLÉGIO PENSI RIO DE JANEIRO
Renata Martins da Rosa - RIO DE JANEIRO

RIO GRANDE DO NORTE
Carlos Alexandre Gomes da Silva UFRN NATAL

RIO GRANDE DO SUL
Álvaro Krüger Ramos UFRGS PORTO ALEGRE
Malcus Cassiano Kuhn - LAJEADO
Márcio Luís Miotto UFSM SANTA MARIA
Paulo Marcus Hollweg Corrêa - SAPUCAIA DO SUL

RONDÔNIA
Vlademir Fernandes de Oliveira Júnior UFRO PORTO VELHO

RORAIMA
Gilson de Souza Costa UFRR BOA VISTA
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SANTA CATARINA
Felipe Vieira - BLUMENAL
Milton Kist - CHAPECÓ

SÃO PAULO
Américo López Gálvez USP RIBEIRÃO PRETO
Armando Ramos Gouveia ITA SÃO JOSÉ DOS CAMPOS
Edson Roberto Abe - CAMPINAS
Débora Bezerra Linhares Libório FSA SANTO ANDRÉ
Emiliano Chagas IFSP SÃO PAULO
Giuliano Zugliani CAMPINAS
João Carlos Ferreira Costa UNESP SÃO JOSÉ DO RIO PRETO
Lucas Colucci IME-USP SÃO PAULO
Maurício Richartz UFABC SANTO ANDRÉ
Marina Mariano de Oliveira - SÃO JOSÉ DOS CAMPOS
Ronaldo Penna Saraiav UNISANTOS SANTOS
Samuel Liló Abdalla - SOROCABA
Parham Salehyan UNESP SÃO JOSÉ DO RIO PRETO
Pedro Tavares Paes Lopes ICMC SÃO CARLOS
Plamen Kochloukov UNICAMP CAMPINAS
Thaís Fernanda Mendes Monis - SANTO ANDRÉ

SERGIPE
Antônio Márcio de Lima Soares - PAULO AFONSO
Valdenberg Araújo da Silva UFSE ARACAJÚ

TOCANTINS
Jaime do Espírito Santo Vieira Júnior - PALMAS
Sâmara Leandro Matos da Silva - ARAGUAÍNA
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