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Aos leitores

Eureka 43! E com esse espirito de descoberta e entusiasmo que apresentamos
a comunidade olimpica mais uma edicdo da nossa revista. Os ultimos anos tém sido
transformadores para diversos setores e habitos da nossa sociedade. Com a comunidade
olimpica nao tem sido diferente. O facil acesso ao conhecimento, o aumento do niimero
de materiais, sejam notas de aulas, livros, videos, entre tantos outros, vém mudando
completamente a velocidade e os habitos de aprendizado de todos nds, especialmente
do ptblico mais jovem. Mesmo diante de todas essas mudangas, a comunidade olimpica
mantém o seu interesse e expectativa pela continuidade da Eureka!, que desde sua origem
sempre se mostrou como um importante canal de comunicagao e aprendizado para toda
a comunidade olimpica, especialmente a brasileira. Nesta edigdo estamos retomando a
publicagao de artigos trazendo temas de interesse da comunidade olimpica e também
algumas outras se¢bes de enorme aceitagdo em épocas anteriores, como Olimpiadas ao
redor do mundo, onde levamos ao leitor a conhecer um pouco de belos problemas que
apareceram em competicoes matemadticas pelo mundo afora. Acreditamos que dessa
forma alguns estudantes (especialmente os menos experientes) possam conhecer um pouco
de outras competi¢cbes matematicas e sentir-se estimulados em bucar mais sobre elas por
conta propria. Além disso, abrimos a presente edicdo com os enunciados dos problemas
propostos nas dltimas oito edi¢oes da IMO-International Mathematical Olympiad (de
2016 a 2023) e os resultados alcancados pelas equipes brasileiras.

Esperamos que a comunidade olimpica sinta-se estimulada e continue, com o entusi-
asmo de sempre, contribuindo para a manutencao desse importante canal de comunicacao
que é a nossa revista Eureka! Problemas, solucoes, sugestoes, artigos sdo muito bem
vindos. Para envia-los basta seguir as instrugoes publicadas em nosso enderego eletronico
https://www.obm.org.br/ ou escrever para contato@associacaodaobm.org

O presente nimero da Eureka! foi editado pelos professores Carlos Alexandre Gomes
da Silva - UFRN, Carlos Gustavo Tamm de Araijo Moreira - IMPA-RJ, Fabio Enrique
Brochero Martinez - UFMG. Nao podemos deixar de registrar aqui o enorme esforgo
de todos os membros da Comissao nacional de Olimpiadas de Matemaética e de muitos
ex-olimpicos que continuam com o mesmo entusiasmo de sempre, sem 0s quais essa
publicacdo ndo poderia se tornar realidade. Agradecemos especialmente ao professor
Carlos Augusto David Ribeiro (UFDPar), pelo importante trabalho de revisao desta
edigao.

Saudagdes Olimpicas!
Os editores.
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Vamos abrir esta edi¢do da Eureka! trazendo os enunciados do problemas propostos
nas ultimas 8 edi¢oes da IMO - Olimpiada internacional de Matemaética, e os resultados
das equipes brasileiras no periodo de 2016 a 2023. As solucoes dos problemas podem ser
encontradas em diversos sites, como por exemplo,

jhttps: |
| //artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions|

Enunciados - IMO 2016 - Hong Kong.

PRIMEIRO DIA

Problema 1. O triangulo BCF é retingulo em B. Seja A o ponto da reta CF tal que
FA =FB e que F esteja entre A e C. Escolhe-se o ponto D de modo que DA = DC e que
AC seja a bissetriz do angulo ZDAB. FEscolhe-se o ponto E de modo que EA = ED e que
AD seja a bissetriz do angulo ZEAC. Seja M o ponto médio de CF. Seja X o ponto tal
que AMXE seja um paralelogramo (com AM||EX e AE||MX). Demonstre que as retas
BD,FX e ME sao concorrentes.

Problema 2. Determine todos os inteiros positivos n tais que pode-se preencher cada
casa de um tabuleiro n X n com uma das letras I, M e O de tal forma que ambas as
condigoes sequintes sejam satisfeitas:

e em cada linha e em cada coluna, eratamente um terco das casas tenha um I, um
terco tenha um M e um terco tenha um O;

e em cada diagonal formada por wm ndmero de casas que seja multiplo de 3, exata-
mente um terco das casas tenha um I, um terco tenha um M e um terco tenha um

0.

Observacgao 1. As linhas e as colunas de um tabuleiro n X n sdo numeradas de 1 a
n. Assim, cada casa corresponde a um par de inteiros positivos (i,j) com 1 < i,j < n.
Paran > 1, o tabuleiro tem 4n — 2 diagonais de dois tipos. Uma diagonal do primeiro
tipo € formada por todas as casas (i,j) para as quais 1+ € igual a wma constante. Uma
diagonal do sequndo tipo € formada por todas as casas (i,j) para as quais i1 —j € igual a
uma constante.

Problema 3. Seja P = AjA5...Ax um poligono convero no plano. Os vértices
Aq,A2,..., A tém coordenadas inteiras e pertencem a uma circunferéncia. Seja S
a drea de P. Seja m um inteiro positivo impar tal que os quadrados dos comprimentos
dos lados de P sejam todos numeros inteiros divisiveis por n. Demonstre que 2S é um
inteiro divisivel por n.


https://artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/IMO_Problems_and_Solutions
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SEGUNDO DIA

Problema 4. Um conjunto de nimeros inteiros positivos € chamado fragante se contém
pelo menos dois elementos e cada um de seus elementos tem algum fator primo em
comum com pelo menos um dos elementos restantes. Seja P(n) =n? +n 4 1. Determine
0 menor numero inteiro positivo b para o qual exista algum numero inteiro nao negativo
a tal que o conjunto

{P(a+1),P(a+2),...,Pla+Db)}
seja fragante.

Problema 5. No quadro estd escrita a equacdo

(x—1N(x—2)-+-(x—2016) = (x—1)(x —2)--- (x — 2016)

que tem 2016 fatores lineares de cada lado. Determine o menor valor possivel de k
para o qual € possivel apagar exatamente k destes 4032 fatores lineares, de modo que
fique pelo menos um fator de cada lado e que a equacdo resultante ndao admita nenhuma
solucdo real.

Problema 6. Hin > 2 segmentos no plano tais que cada par de segmentos se intersecta
num ponto interior a ambos e ndo hd trés segmentos que tenham um ponto em comum.
Geoff deve escolher um dos extremos de cada segmento e colocar sobre ele um sapo, virado
para o outro extremo. Depois ele baterd palmas 1 — 1 vezes. Cada vez que ele bater as
maos, cada sapo saltard imediatamente para a frente até o prozimo ponto de intersegdo
sobre o seu segmento. Os sapos nunca mudam a dire¢cio dos seus saltos. Geoff deseja
colocar os sapos de tal forma que dois sapos nunca ocupem ao mesmo tempo o mesmo
ponto de intersegdo.

(a) Prove que se n é impar, Geoff sempre tem uma maneira de realizar o seu desejo.

(b) Prove que se n € par, Geoff nunca realiza o seu desejo.



Resultado da equipe brasileira - IMO - 2016

Lider: Nicolau C. Saldanha.
Vice-lider: Samuel Barbosa Feitosa.

Nome Cidade - Estado | Premiacao
Jodo César Campos Vargas Sao Paulo-SP Prata
Andrey Jhen Shan Chen Valinhos-SP Prata
Daniel Lima Braga Eusébio-CE Prata
Pedro Henrique S. de Oliveira Sao Paulo-SP Prata
Gabriel Toneatti Vercelli Osasco-SP Prata
George Lucas Diniz Alencar Fortaleza-CE Bronze
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Enunciados - IMO 2017 - Rio de Janeiro, Brasil.
PRIMEIRO DIA

Problema 1. Para cada inteiro ag > 1, define-se a sequéncia ag, ai,dz,... tal que,
para cada n > 0:

an + 3, caso contrdrio.

_JV/an, se/an € inteiro,
An+1 =

Determine todos os valores de ap para os quais existe um numero A tal que a,, = A para
infinitos valores de n.

Problema 2. Seja R o conjunto dos nimeros reais. Determine todas as fungées f: R — R
tais que, para quaisquer numeros reais X ey,

f(F()f(y)) + flx +y) = fxy).

Problema 3. Um coelho invisivel e um cacador jogam da seguinte forma no plano
euclidiano. O ponto de partida Ao do coelho e o ponto de partida By do cacador sdo
iguais. Depois de n — 1 rodadas do jogo, o coelho encontra-se no ponto An_1 e o cacador
encontra-se no ponto Bh_1. Na n-ésima rodada do jogo, ocorrem trés coisas na sequinte
ordem:

(1) O coelho move-se de forma invisivel para um ponto Ay tal que a distancia entre
An_1 e An € exatamente 1.

(i) Um aparelho de localizag¢io informa um ponto Py ao cacador. A dnica informagdio
garantida pelo aparelho ao cacador é que a distancia entre Py, e Ay, € menor ou
tgual a 1.

(ii1) O cagador move-se de forma visivel para um ponto By tal que a distancia entre
Bn_1 e By € exatamente 1.

E sempre possivel que, qualquer que seja a maneira em que se mova o coelho e
quaisquer que sejam os pontos informados pelo aparelho de localizagdo, o cacador possa
escolher os seus movimentos de modo que depois de 10° rodadas o cacador possa garantir
que a distancia entre ele e o coelho seja menor ou igual que 1007



SEGUNDO DIA

Problema 4. Sejam R e S pontos distintos sobre a circunferéncia Q tais que RS ndo é
um didmetro de Q. Seja £ a reta tangente a Q em R. O ponto T € tal que S € o ponto
médio do segmento RT. O ponto | escolhe-se no menor arco RS de Q de maneira que T,
a circunferéncia circunscrita ao triangulo JST, interseta € em dois pontos distintos. Seja
A o ponto comum de T e { mais prozimo de R. A reta AJ interseta pela sequnda vez Q
em K. Demonstre que a reta KT € tangente a T.

Problema 5. Seja N > 2 um inteiro dado. Um conjunto de N(N + 1) jogadores de
futebol, todos de diferentes alturas, colocam-se em fila. O treinador deseja retirar N(N—1)
jogadores desta fila, de modo que a fila que sobra formada pelos 2N jogadores restantes
satisfaca as N condigdes sequintes:

(1) Ndao resta ninguém entre os dois jogadores mais altos.

(2) Nao resta ninguém entre o terceiro jogador mais alto e o quarto jogador mais alto.

(N) Ndo resta ninguém entre os dois jogadores mais baixos.
Demonstre que isto é sempre possivel.

Problema 6. Um par ordenado (x,y) de inteiros é wm ponto primitivo se o mdzximo
divisor comum entre x ey € 1. Dado um conjunto finito S de pontos primitivos, demonstre
que existem um inteiro positivo N e inteiros dp, A1,...,An tais que, para cada (x,y) de
S, se verifica:

aox™ + ax™ 'y + axx™ 2yt + oy Fayt =1,
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Resultado da equipe brasileira - IMO - 2017

Lider: Krerley Irraciel Martins Oliveira.
Vice-lider: Frederico Vale Girao.

Nome Cidade - Estado Premiacao
Jodo César Campos Vargas Passa Tempo-MG Prata
Davi Cavalcanti Sena Fortaleza-CE Prata
George Lucas Diniz Alencar Fortaleza-CE Bronze
André Yuji Hisatsuga Belo Sao Paulo-SP | Mencao honrosa
Bruno Brasil Meinhart Fortaleza-CE Mencao honrosa
Pedro Henrique S. de Oliveira Sao Paulo-SP Mencao honrosa
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Enunciados - IMO 2018 - Cluj-Napoca, Roménia.

PRIMEIRO DIA

Problema 1. Seja I' o circuncirculo do triangulo acutangulo ABC. Os pontos D e
E estao sobre os segmentos AB e AC, respectivamente, de modo que AD = AE. As
mediatrizes de BD e CE intersectam os arcos menores AB e AC de ' nos pontos F e G,
respectivamente. Prove que as retas DE e FG sao paralelas (ou sdo a mesma reta).

Problema 2. Determine todos os inteiros n > 3 para 0s quais existem numeros reais
a1,02y...,0n42, tais que Any] = A1,0n42 = Al €

aiaiy1 +1=ai2
parai=1,2,...,n.

Problema 3. Um triangulo anti-Pascal € uma disposicio de numeros em forma de
triangulo equildtero tal que, exceto para os numeros na ultima linha, cada niumero € o
mddulo da diferenca entre os dois nimeros imediatamente abaizo dele. Por exemplo, a
sequinte disposicao de numeros é um triangulo anti-Pascal com quatro linhas que contém
todos os inteiros de 1 até 10.

2 6

8 3 10 9

Determine se existe um triangulo anti-Pascal com 2018 linhas que contenha todos os
inteiros de 1 até 1+ 24 ---+ 2018.

SEGUNDO DIA

Problema 4. Um local é um ponto (x,y) no plano tal que x ey sdo ambos inteiros
positivos menores ou iguais a 20.

Inicialmente, cada um dos 400 locais estd vazio. Ana e Beto colocam pedras al-
ternadamente com Ana a iniciar. Na sua vez, Ana coloca uma nova pedra vermelha
num local vazio tal que a distdncia entre quaisquer dois locais ocupados por pedras
vermelhas seja diferente de /5. Na sua vez, Beto coloca uma nova pedra azul em qual-
quer local vazio. (Um local ocupado por uma pedra azul pode estar a qualquer distincia
de outro local ocupado.) Eles param quando um dos jogadores nao pode colocar uma pedra.

Determine o maior K tal que Ana pode garantir que ela coloca pelo menos K pedras
vermelhas, ndo importando como Beto coloca suas pedras azuis.
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Problema 5. Sejam aj,ay,... uma sequéncia infinita de inteiros positivos. Suponha
que existe um inteiro N > 1 tal que, para cada n > N, o nimero

a as an a

é um inteiro. Prove que existe um inteiro positivo M tal que am = am1 para todo
m > M.

Problema 6. Um quadrilatero convero ABCD satisfaz AB - CD = BC-DA. O ponto X
estd mo interior de ABCD de modo que

/XAB =/4ZXCD e ZXBC = ZXDA.
Prove que /BXA 4+ ZDXC = 180°.

Resultado da equipe brasileira - IMO - 2018

Lider: Régis Prado Barbosa.
Vice-lider: José Armando Barbosa Filho.

Nome Cidade - Estado Premiacgao
Pedro Lucas Lanaro Sponchiado Sao Paulo-SP Ouro
Bruno Brasil Meinhart Fortaleza-CE Bronze
Pedro Gomes Cabral Recife-PE Bronze
Bernardo Peruzzo Trevizan Sao Paulo-SP Bronze
André Yuji Hisatsuga Sao Paulo-SP Bronze
Lucas Hiroshi H. Harada Sao Paulo-SP Mengao honrosa
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Enunciados - IMO 2019 - Bath, Reino Unido.
PRIMEIRO DIA

Problema 1. Seja Z o conjunto dos numeros inteiros. Determine todas as fungoes
f:7Z — Z tais que, para quaisquer inteiros a e b,

f(2a) + 2f(b) = f(f(a + b)).

Problema 2. No triangulo ABC, o ponto Aq estd no lado BC e o ponto By estd no
lado AC. Sejam P e Q pontos nos segmentos AA1 e BBy, respectivamente, tal que PQ ¢é
paralelo a AB. Seja P1 um ponto na reta PBy, tal que By estd estritamente entre P e
P1 e ZPP1C = ZBAC. Analogamente, seja Q1 um ponto na reta QAq, tal que Ay estd
estritamente entre Q e Q1 e ZCQ1Q = ZCBA.

Prove que os pontos PyQ, Py e Q1 sdo conciclicos.

Problema 3. Uma rede social possui 2019 usudrios, alguns deles sGo amigos. Sempre
que o usudrio A é amigo do usudrio B, o usudrio B também é amigo do usudrio A.
Eventos do sequinte tipo podem acontecer repetidamente, um de cada vez:

Trés usudrios A,B e C tais que A € amigo de B e A é amigo de C, mas B e C ndo
sdo amigos, mudam seus estados de amizade de modo que B e C agora sdo amigos, mas
A deiza de ser amigo de B e A deixa de ser amigo de C. Todos o0s outros estados de
amizade nao sdo alterados.

Inicialmente, 1010 usudrios possuem exatamente 1009 amigos cada e 1009 usudrios
possuem exatamente 1010 amigos cada. Prove que existe uma sequéncia de tais eventos
tal que, apds essa sequéncia, cada usudrio € amigo de no mdrimo um outro usudrio.

SEGUNDO DIA

Problema 4. Encontre todos os pares (k,m) de inteiros positivos tais que

Kl=@2"—1) (2" —2) (2" —4)..- (2~ —2T)

Problema 5. O Banco de Bath emite moedas com um H num lado e um T no outro.
Harry possui . dessas moedas colocadas em linha, ordenadas da esquerda para a direita.
Ele repetidamente realiza a sequinte operacdo: se hd exatamente k > 0 moedas mostrando
H, entao ele vira a k-ésima moeda contada da esquerda para a direita; caso contrdrio,
todas as moedas mostram T e ele para. Por exemplo, se n =3 o processo comegando com
a configuragao THT é THT — HHT — HTT — TIT, que acaba depois de trés operacies.
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(a) Mostre que, para qualquer configuragdo inicial, Harry para apés um nimero finito
de operagoes.

(b) Para cada configuracio inicial C, seja L(C) o nimero de operacoes antes de Harry
parar. Por exemplo, L(THT) =3 ¢ L(TTT) = 0. Determine a média de L(C) sobre
todas as 2™ possiveis configuracoes iniciais C.

Problema 6. Seja I o incentro do triangulo acutingulo ABC com AB # AC. A
circunferéncia inscrita (incirculo) w de ABC € tangente aos lados BC,CA e ABnos
pontos D, E e F, respectivamente. A reta que passa por D perpendicular a EF intersecta
w novamente em R. A reta AR intersecta w novamente em P. As circunferéncias
circunscritas (circuncirculos) dos triangulos PCE e PBF se intersectam novamente no
ponto Q.

Prove que as retas DI e PQ se intersectam sobre a reta que passa por A perpendicular
a Al

Resultado da equipe brasileira - IMO - 2019

Lider: Edmilson Motta.
Vice-lider: Carlos Yuzo Shine.

Nome Cidade - Estado | Premiacao
Samuel Prieto Lima Fortaleza-CE Prata
Pedro Gomes Cabral Fortaleza-CE Prata
Bernardo Peruzzo Trevizan Sao Paulo-SP Bronze
Pedro Lucas Lanaro Sponchiado Sao Paulo-SP Bronze
Guilherme Zeus Dantas e Moura Marica-RJ Bronze
Felipe Chen Wu Rio de Janeiro-RJ Bronze
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Enunciados - IMO 2020 - Sao Petersburgo, Russia.

PRIMEIRO DIA

Problema 1. Considere o quadrilitero convexo ABCD. O ponto P estd no interior de
ABCD. Verificam-se as sequintes iqualdades entre razoes:

/ZPAD: /PBA: ZDPA =1:2:3=/ZCBP: ZBAP: ZBPC.

Prove que as trés sequintes retas se intersetam num ponto: as bissetrizes internas
dos angulos ZADP e ZPCB e a mediatriz do segmento AB.

Problema 2. Problema 2. Os numeros reais a,b,c,d sdo tais quea>b>c>d>0ce
a+b+c+d=1. Prove que

(a+2b+3c+4d)a®b®ccd? < 1.

Problema 3. Temos 4n pedras com pesos 1,2,3,...,4n. Cada pedra estd colorida com
uma de n cores e hd quatro pedras de cada cor. Mostre que podemos organizar as pedras
em dois grupos de modo que as sequintes condigoes sao ambas satisfeitas:

e Os pesos totais dos dois grupos sGo iguais.

e Cada grupo contém duas pedras de cada cor.
SEGUNDO DIA

Problema 4. Seja n > 1 um inteiro. Na encosta de uma montanha existem n? estagoes,
todas com diferentes altitudes. Duas companhias de teleféricos, A e B, operam k teleféricos
cada uma. Cada teleférico faz a viagem de uma estacdo para uma de maior altitude
(sem paragens intermédias). Os k teleféricos de A partem de k estagoes diferentes e
terminam em Kk estagoes diferentes; além disso, se um teleférico parte de uma estagdo de
maior altitude do que a de partida de outro, também termina numa esta¢io de maior
altitude do que a de chegada desse outro. A companhia B satisfaz as mesmas condigoes.
Dizemos que duas estagoes estao ligadas por uma companhia se podemos comegar na
estacdo com menor altitude e chegar a de maior altitude usando wm ou mais teleféricos
dessa companhia (nao sao permitidos quaisquer outros movimentos entre estagoes).
Determine o menor inteiro positivo k que garante que existam duas estacoes ligadas por
ambas as companhias.
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Problema 5. Temos um baralho de n > 1 cartas, com um inteiro positivo escrito em
cada carta. O baralho tem a propriedade de que a média aritmética dos numeros escritos
em cada par de cartas é também a média geométrica dos numeros escritos nalguma
colecio de uma ou mais cartas.

Para que valores de n podemos concluir que os numeros escritos nas cartas sao todos
iquais?

Problema 6. Prove que eziste uma constante positiva ¢ para a qual a sequinte afirmagdo
€ verdadeira:

Considere um inteirom > 1, e um conjunto S de n pontos no plano tal que a distancia
entre quaisquer dois pontos diferentes de S € pelo menos 1. Entdo existe uma reta £ que
separa S tal que a distincia de qualquer ponto de S a £ é pelo menos cn™ /3.

(Uma reta £ separa um conjunto de pontos S se existe algum segmento com extremos
em dois pontos de S que interseta {.)
-1/3

Nota. A resultados mais fracos obtidos substituindo cn por cn~* podem ser

atribuidos pontos dependendo do valor da constante o > 1/3.
Resultado da equipe brasileira - IMO - 2020

Lider: Carlos Gustavo Tamm de Aratjo Moreira.
Vice-lider: Matheus Secco Torres da Silva.

Nome Cidade - Estado | Premiacao
Pedro Gomes Cabral Fortaleza-CE Ouro
Bernardo Peruzzo Trevizan Sao Paulo-SP Prata
Guilherme Zeus Dantas e Moura Marica-RJ Prata
Francisco Moreira M. Neto Fortaleza-CE Prata
Gabriel Ribeiro Paiva Fortaleza-CE Prata
Pablo Andrade Carvalho Barros Teresina-PI Prata
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Enunciados - IMO 2021 - Sao Petersburgo, Russia.
PRIMEIRO DIA

Problema 1. Seja n > 100 um inteiro. O Ivan escreve cada um dos nimeros n,n +
1,...,2n numa carta diferente. Depois de baralhar estas n+ 1 cartas, divide-as em dois
montes. Prove que pelo menos um desses montes contém duas cartas tais que a soma
dos seus numeros é um quadrado perfeito.

Problema 2. Mostre que a desigualdade
n n
i—xl <Y D (/i 4l

i=1j=1 i=1j=1

€ satisfeita por todos 0s numeros reais Xi,...,Xn.-

Problema 3. Seja D um ponto interior de um triangulo acutangulo ABC, com AB > AC,
tal que ZDAB = ZCAD. O ponto E, no segmento AC, satisfaz ZADE = ZBCD; o ponto
F, no segmento AB, satisfaz ZFDA = ZDBC e o ponto X, na reta AC, satisfaz CX = BX.
Sejam O7 e Oz os circuncentros dos triangulos ADC e EXD, respetivamente. Prove que
as retas BC,EF e O10; sdo concorrentes.

SEGUNDO DIA

Problema 4. Sejam T uma circunferéncia com centro 1 e ABCD um quadrildtero
convezo tal que cada um dos segmentos AB,BC,CD e DA ¢ tangente a T'. Seja Q a
circunferéncia circunscrita do triangulo AIC. O prolongamento de BA para além de
A interseta Q em X, e o prolongamento de BC para além de C interseta QO em Z. Os
prolongamentos de AD e CD para além de D intersetam Q em Y e T, respetivamente.
Prove que

AD+DT+TX+XA=CD+DY+YZ+4ZC

Problema 5. Dois esquilos, Bushy e Jumpy, recolheram 2021 nozes para o inverno. O
Jumpy numera as nozes desde 1 até 2021 e escava 2021 pequenos buracos no chdo numa
disposicao circular d volta da sua drvore favorita. Na manhd sequinte, o Jumpy observa
que o Bushy colocou uma noz em cada buraco, mas sem ter em conta a numeracio. Ndo
contente com isto, o Jumpy decide reordenar as nozes realizando uma sequéncia de 2021
movimentos. No k-ésimo movimento o Jumpy troca as posicoes das duas nozes adjacentes
a noz com o numero k. Prove que existe um valor de X tal que, no k-ésimo movimento,
as nozes trocadas tém numeros a e b tais que a < k < b.
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Problema 6. Sejam m > 2 um inteiro, A um conjunto finito de inteiros (ndo necessa-
riamente positivos) e By, B2, B3, ..., By subconjuntos de A. Suponhamos que, para cada
k=1,2,...,m, a soma dos elementos de By é m

m/2 elementos.

k

. Prove que A contém pelo menos

Resultado da equipe brasileira - IMO - 2021

Lider: Edmilson Motta.

Vice-lider: Davi Lopes Alves de Medeiros.

Nome Cidade - Estado Premiacgao
Marcelo Machado Lage Belo Horizonte-MG Prata
Olavo Paschoal Longo Sao Paulo-SP Prata
Gabriel Ribeiro Paiva Fortaleza-CE Bronze
Pablo Andrade Carvalho Barros Teresina-PI Bronze
Gustavo Neves da Cruz Belo Horizonte-MG Bronze

Pedro de Oliveira L. Lack

Nova Friburgo-RJ

Mencao honrosa
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Enunciados - IMO 2022 - Oslo, Noruega
PRIMEIRO DIA

Problema 1. O Banco de Oslo emite dois tipos de moedas: moedas de aluminio
(denotadas por A ) e moedas de bronze (denotadas por B ). Marianne tem n moedas de
aluminio e n moedas de bronze, dispostas numa linha em alguma ordem inicial arbitrdaria.
Um bloco é qualquer subsequéncia de moedas consecutivas do mesmo tipo. Dado um
inteiro positivo fizo k < 2n, Marianne realiza repetidamente a seguinte operagdo: ela
identifica o bloco mais longo contendo a k-ésima moeda da esquerda para a direita, e
mowve todas as moedas desse bloco para o extremo esquerdo da linha. Por exemplo, se
n=4 ek =4, o processo comecando com a sequinte ordem AABBBABA seria

AABBBABA — BBBAAABA — AAABBBBA —
— BBBBAAAA — BBBBAAAA — ---.

Encontre todos os pares (n, k) com 1 < k < 2n tais que, para qualquer ordem inicial,
em algum momento durante o processo, as N moedas mais d esquerda serdo todas do
mesmo tipo.

Problema 2. Seja RT o conjunto dos niimeros reais positivos. Encontre todas as fungoes
f: Rt — Rt tais que para cada x € RT, existe exatamente um y € RY satisfazendo

xf(y) +yf(x) < 2.

Problema 3. Seja k um inteiro positivo e seja S um conjunto finito de nimeros primos
impares. Prove que existe no mdzimo uma forma (a menos de rotag¢io e reflexdo) de
colocar os elementos de S ao redor de uma circunferéncia de modo que o produto de
quaisquer dois vizinhos é da forma x* +x + X para algum inteiro positivo x.

SEGUNDO DIA

Problema 4. Seja ABCDE um pentdgono convezxo tal que BC = DE. Suponha que
existe um ponto T no interior de ABCDEcom TB = TD, TC = TE ¢ ZABT = /TEA. A
reta AB intersecta as retas CD e CT nos pontos P e Q, respetivamente. Suponha que os
pontos PyB, A e Q aparecem na reta nesta ordem. A reta AE intersecta as retas CD e
DT nos pontos R e S, respectivamente. Suponha que os pontos R,E, A e S aparecem na
reta nesta ordem. Prove que os pontos P,S,Q e R estdo sobre uma circunferéncia.
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Problema 5. Encontre todas as triplas (a,b,p) de inteiros positivos tais que p € primo
e

aP =bl+p

Problema 6. Seja n um inteiro positivo. Um quadrado Nordico é um tabuleiro n x n
contendo todos os inteiros de 1 até n? de modo que cada quadradinho contém exatamente
um numero. Dois quadradinhos diferentes sdo considerados adjacentes se eles tém um
lado em comum. Um quadradinho que é adjacente apenas a quadradinhos com nimeros
maztores é chamado de um vale. Um caminho crescente é uma sequéncia de um ou mais
quadradinhos tais que:

(i) o primeiro quadradinho da sequéncia é um vale,
(i1) cada quadradinho a partir do sequndo é adjacente ao quadradinho anterior,
(il) os numeros contidos nos quadradinhos da sequéncia estdo em ordem crescente.

Encontre, em funcdo de n, a menor quantidade possivel de caminhos crescentes de
um quadrado Nérdico.

Resultado da equipe brasileira - IMO - 2022

Lider: Regis Prado Barbosa.
Vice-lider: Rafael Kazuhiro Miyazaki.

Nome Cidade - Estado Premiacao
Olavo Paschoal Longo Sao Paulo-SP Ouro
Marcelo Machado Lage Belo Horizonte-MG Ouro
Rodrigo Salgado Domingos Porto Rio de Janeiro-RJ Prata
Eduardo Henrique R. do Nascimento Sao Paulo-SP Bronze
Gabriel C. V Torkomian Sao Carlos-SP Bronze
Joao Pedro R. V. Costa Fortaleza-CE Mencgao honrosa
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Enunciados - IMO 2023 - Chiba, Japao.

PRIMEIRO DIA

Problema 1. Determine todos os niumeros inteiros n > 1 compostos que satisfazem
a sequinte propriedade: se di,da,...,dx sdo todos os divisores positivos de n com
1=dy <d; <---<dyg =n, entdo di divide di1 + dir2 para todo 1 <i<k—2.

Problema 2. Seja ABC um triingulo acutingulo com AB < AC. Seja Q) o circuncirculo
de ABC. Seja S o ponto médio do arco CB de Q contendo A. A reta perpendicular a BC
que passa por A intersecta o segmento BS em D e intersecta QO novamente em E # A. A
reta paralela a BC que passa por D intersecta a reta BE em L. Denote o circuncirculo do
triangulo BDL por w. A circunferéncia w intersecta QQ novamente em P # B.

Prove que a reta tangente a w em P intersecta a reta BS num ponto sobre a bissetriz

interna de ZBAC.

Problema 3. Para cada inteiro k > 2, determine todas as sequéncias infinitas de

inteiros positivos ai,d2,... para as quais existe um polindmio P da forma P(x) =
x4 e x4 e+ Co, €M que CoyCly...,Ck—1 SA0 inteiros nao negativos, tal
que

P(an) = ant1Qny2 -+ Qnik

para todo inteiron > 1.
SEGUNDO DIA

Problema 4. Sejam x1,X2,...,X2023 numeros reais positivos, distintos dois a dois, tais

que
1 1 1
an =4/(x1+x2+--Fxp) | —+—+- -+ —
X1 X2 Xn

€ um inteiro para todon =1,2,...,2023. Prove que azp23 = 3034.

Problema 5. Sejan um inteiro positivo. Um triangulo japonés consiste em 14+24---4n
circulos iguais formando um triangulo equildtero tal que para cada i=1,2,...,m, a i-
ésima linha contém exatamente i circulos, com exatamente um deles pintado de vermelho.
Um caminho ninja num triangulo japonés é uma sequéncia de n circulos comegcando
com o circulo da primeira linha e indo sucessivamente de um circulo para um dos dois
circulos imediatamente abaizo dele e terminando na 4ltima linha. Na figura sequinte hd
um exemplo de um tridngulo japonés com n = 6, no qual hd um caminho ninja contendo
dois circulos vermelhos.
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Em fungao de n, encontre o maior k tal que em qualquer tridngulo japonés existe um
caminho ninja contendo pelo menos k circulos vermelhos.

Problema 6. Seja ABC um triangulo equildtero. Sejam Aq1,B1,Cy pontos no interior
de ABC tais que BA1 = A1C,CBy =B1A,AC; =CiB e

ZBA;C+ ZCB1A 4+ ZAC1B =480°.

As retas BC7 e CBy se intersectam em Aj, as retas CA7 e ACy se intersectam em
By e as retas ABy e BA; se intersectam em Cs.
Prove que, se o triangulo A1B1Cy € escaleno, entao os trés circuncirculos dos triangulos
AA1A;, BB1By e CC1Cy possuem dois pontos em comum.

Nota: um triangulo escaleno é um triangulo que ndo possui dois lados com a mesma
medida.
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Resultado da equipe brasileira - IMO - 2023

Lider: Edmilson Motta.
Vice-lider: Samuel Barbosa Feitosa.

Nome Cidade - Estado | Premiacao
Matheus Alencar de Moraes Fortaleza-CE Ouro
Rodrigo Salgado D. Porto Rio de Janeiro-RJ Prata
Leonardo Henrique F. Maldonado Sorocaba-SP Prata
Luis Felipe Pestana Giglio Niter6i-RJ Bronze
Eduardo Henrique R. do Nascimento Goiania-GO Bronze
Felipe Makoto Shimamura Silva Sao Paulo-SP Bronze




Artigo: Permutagoes Cadticas Generalizadas

e Nivel Avancado
Tesus C. Diniz, Bruno S. Gdis e Juan R. Cruz
UFRN - Natal/RN

Introdugao

Um problema ja bem conhecido em combinatoria é o do nimero permutagées cadticas
de um conjunto A = {aj,...,a,} de n elementos, comumente representado por Dy,
ou !n. Este problema foi proposto primeiramente por Pierre Raymond de Montmort ,
[ em 1708, e resolvido pelo préoprio em 1713. Nicholas Bernoulli também o resolveu,
aproximadamente no mesmo periodo, usando o principio da inclusao e exclusdo.

Uma permutagéo cadtica dos elementos do conjunto A ={aj,...,an,} é o conjunto
das permutacoes dos elementos de A nas quais nenhum deles aparece em sua posi¢ao
inicial, ou de maneira mais formal, o conjunto das fungoes bijetivas f : A — A tais
que f(ai) # a; para todo i € {1,...,n}. Sendo C, o conjunto de todas as permutagoes
cadticas que Dy, = #C,, (a cardinalidade de Cy, ), em [2] é dada uma expressdao para o
célculo de D, ademais é mostrado que D, é o inteiro mais préximo de %'

1)
!

n (_
Dy, :n!Z -
= )’

Exemplo 1. Sejam I, :={1,...,n} o conjunto dos n primeiros inteiros positivos e Cr,
de todas as permutagoes cadticas de 1. Determine C4 e Dy.

e

e D= || 1)

Solugdo. Seja 14 ={1,2, 3,4}, tem-se portanto que

Cs=1{(2,1,4,3),(2,4,1,3),(2,3,4,1),(3,1,4,2),(3,4,1,2),(3,4,2,1),
(4,3,2,1),(4,3,1,2),(4,1,2,3)} e D4y =9.

Exemplo 2. Um técnico de futsal dispoe de um elenco de 8 jogadores de linha: 2 laterais
esquerdo, 2 laterais direito, 2 fixos, 2 pivds além de 2 goleiros. De quantos modos o
técnico pode escalar o time, se apenas o goleiro puder jogar em sua posi¢io natural?

Solugdo. Ha (%) (%) (%) (%) (%) = 2% maneiras de se escolher os 4 jogadores de linha e
o goleiro que serao titulares, para cada uma destas escolhas, hd uma possibilidade de
escalagéo do goleiro e D4 possibilidades para os jogadores de linha. Assim, segue-se pelo

principio fundamental da contagem que hé 2° x 1 x 9 possibilidades de escalacdo do time.
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Neste artigo generalizaremos o calculo do nimero de permutagoes cadticas D,, obtidos
entre dois conjuntos de mesmos elementos para dois conjuntos quaisquer. Denotaremos
por DX o ntimero de permutagdes cadticas entre dois conjuntos A e A* de n elementos
dos quais k deles sdo ndo comuns aos dois conjuntos, isto é, |A N A*| = n — k, para todo
k €{1,...,n}. Existem duas solugdes para este caso. A primeira delas serd demonstrada
por inducao a partir de uma recorréncia, enquanto a segunda serda determinada por um
argumento combinatorio.

Teorema 1. Sejam A e A* dois conjuntos tais que | ANA*| =n—k e |A] =|A* =n,
entao para todo k € {0,...,mn}

Dk = i G) Dnj. (2)

j=0

1. O valor de Dy, é um caso particular da Eq. [J] com k = 0; pois se k = 0, entdo
A = A* e D2 é o ntimero de permutacgdes caéticas entre dois conjuntos de mesmos
elementos, ou seja, D% = Dy;

2. Se k =n, entao os conjuntos A e A* ndo apresentam nenhum elemento em comum,
neste caso Dy =nl.

Prova pelo principio da indugéao finita

Sejam A e A* dois conjuntos tais que |JANA*|=n—k e |A| = |A*| =n. Sem perda
de generalidades, consideremos

A={1,...,kk+1,...,n} e A*={1%,..., k" k+1,...,n} com
Dli o numero das permutacoes cadticas entre os elementos de A e A*.

Diferentemente do problema classico das permutacoes cadticas, nos quais os dois
conjuntos continham os mesmos elementos, temos agora k elementos ndo comuns aos
dois conjuntos, e com isso ha novas possibilidades de permutacoes cadticas dos elementos
entre os conjuntos A e A*.

Para todo i € {1,...,k} seja A; o conjunto das permutagoes cadticas nas quais o
elemento i* de A* ocupa a posicao i.

O ndamero de permutagoes cadticas poderd ser calculado a partir do condicionamento
nos elementos ndo comuns aos dois conjuntos que ocupam ou nao as suas posigoes
naturais. Falando de modo mais especifico, se ao menos um elemento i* € {1*,2*,...,k*}
ocupa a posi¢do i, Aj U...U Ay, ou nenhum elemento i* de A* estiver em sua posicao
natural, (A7 U...UA ). Assim, pelo principio aditivo tem-se

DX = [(AjU...UA) |+ (A7 U...UAL)

3
=AY N...NAL+ (AT U... UAY)] ®)
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e desde que para todo k € {1,...,n}

[AfN...NAL|=Dn (4)
tem-se de e que

DX =Dn + (A1 U...UAY). (5)
Ademais, tem-se que

Vjie{l,...,k} com f{iy,iz,...,i;} C{1,...,k}

A, NAL, N...NAy| =Dy, com DS =Dy . (6)
Para k =1, entdo j = 1 e segue-se de e @ que

D) =|A§|+|A;| =Dy + Dn_1. (7)

Para k = 2, entao de @ segue-se que para todo 17 € {1,2}

Ay =D}y (k=2j=1) e JA1NAy=Dn 2 (k=2,j=2).
Logo de e @, tem-se
D =Du +1(A1 UA,)]

=Dn+ Y IAyl—IA;, DAL

1<iy <2 ®)

=D, +2D! ,+D,.
=Dn + Z(an1 + anZ) —Dn—2
=Dn+2Dn1+Dn 2.

Para k = 3, entdo de () com i; €{1,2,3} e {i1,12} € {1,2,3}
A, | = D121—1 G=1), A, NALl= DL_Z G=2) e [A7NA;NA3l=Dn_3(j=3).
Logo de , @), @ e segue-se que

D3 =Dy, + (A1 UA; UA3)|

=Dn+t Z ALl — Z AL, NALI+HIATNAZNAS]
1<i7,<3 1<ig<i, <3
2 1 (9)
=D, +3D;,_;—3D,,_,+Dn_3

= Dn + 3(Dn71 + 2Dn72 + Dn73) - 3(Dn72 + an.’)) + Dn73
=D, +3Dn 1 +3Dn 2+ Dn73 .



Fureka! 43 23

Admitamos como hip6tese de indugdo que para um certo k € N,

Lema 1. Para todo k € N,

DX = DK + DX _,
Demonstragio. Tem-se que DXT1 é o total de permutacdes cadticas entre dois conjuntos
de n-elementos com k + 1 elementos ndo comuns a ambos. Para todo j € {1,...,k+ 1}

particionando o conjunto das permutagdes cadticas em relagdo a qualquer um dos Aj;,
A7 por exemplo, tem-se:

DXt = |AS| +|A;| = DX + DX, (11)
0

Usando a recorréncia e a hipétese de indugao dada em ([L0)), segue-se que
D" =DX + DX,

K K
k k

= (.)Dnj+Z(.>Dnlj
—\j =\

j=

2 Qe (5 o B

k + k+1 k+1
1 Dn_1+...+ k Dn_x + K+1 Dn—(k—b—])
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Prova por um argumento combinatério
Considere o conjunto das permutacoes cadticas entre os elementos dos conjuntos
A={l,...,kk+1,...,n} e A*={1",..., k" k+1,...,n}

e A o conjunto das permutacgoes cadticas nas quais o elemento 1* de A* ocupa a posi¢ao
i, para todo i € {1,...,k}.
O namero de permutagoes cadticas poderd ser calculado a partir do condicionamento

na quantidade Q; de permutacdes caéticas nas quais exatamente j € {1,...,k} elementos
nao comuns a A e A* ocupam as suas posi¢des naturais, isto é, na quantidade das
permutacoes cadticas que pertencem a exatamente j eventos A; , 1 € {1,...,k}. Assim,

poderemos ter desde que nenhum dos k elementos ndo comuns aos dois conjuntos A e A*
ocupem a sua posicao natural até no maximo k deles ocuparem as suas posi¢oes naturais.
Logo,

DX =Qo+Q1+...+Qx, emque Q; = (?) Dnj (12)

onde a ultima igualdade de 1} segue do fato de que ha (];) maneiras de se escolher
exatamente j dos k elementos nao comuns aos dois conjuntos ocupando as suas posigdes
naturais com os demais n —j elementos podendo ser permutados caoticamente por Dy, j.
Segue-se portanto que

k
" k
DnZQo+Q1+---+Qk=§ . |Dn—j
=0 )
Exemplo 3. Num congresso matemdtico n pessoas encontram-se sentadas num auditorio
de n+Xk cadeiras. Elas vao para uma outra sala e quando retornam ao auditério, sentam-
se novamente e € observado que nenhuma delas ocupa a mesma cadeira que antes. Mostre
que o numero de maneiras que isto pode ocorrer é D7k1+k.

Solugdo. Sem perda de generalidade, suponhamos as cadeiras numeradas de 1 a
n + k, com as n primeiras sendo previamente ocupadas por pessoas numeradas de T a n.
Ademais, considere para todo (i,j) € {1,...,n}x{1,...,n + k} a seguinte conven¢io: (i,j)
representando a cadeira j sendo ocupada pela pessoa i e paral € {(n+ 1)*,...,(n+ k)*}
(1,3) se a cadeira j estiver vazia. Assim, o nimero de maneiras da sala ser ocupada
sem as posicoes iniciais serem repetidas por nenhum dos presentes, é o conjunto das
permutagoes cadticas entre os conjuntos A* = {1,...,n,(n+1)*...,(n+k)*} e A =
...,y (n+1),...,(n+Xk)}, ie,

k
k
Di =3 ()P (13)
j=0
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Observagao 2. O resultado dado em a partir do Teorema ' € uma generalizagdo
do problema 13, pdgina 173 de [ para o caso em que k = 1.

Problemas propostos

1. Prove que para todo n > 3,

Dy = (T‘I.— ‘I)(anl + anZ) .

2. Prove usando a recorréncia ([11)) que

(—1)
Dn :Z T

n
j=0

nt— (g)Dn+ (T;)Dn] - (Q)DO.

4. (MIT-Competition-2014) Determine a quantidade de triplas ndo ordenadas de
conjuntos (A, B, C) tais que:

3. Prove que

(a) A,B,C c{1,...,8}
(b) JANB|=BNC|=|CNA|=2;
(c) IAl=[B| =|C|=4.

5. (China National Competition-2001, [3]) Defina a sequéncia infinita aj, az,... re-
curssivamente como segue: a1 =0, a; =1e

1 1 n
= — — — - n - 5 > .
an 2nanq + Zn(n Nan_2+(—1) (1 2) vn >3

Encontre uma férmula explicita para

fa=an+2 " an_1+3 n an-2+...+ " aj.
1 2 n—1
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Artigo: Transformacgoes Geométricas na OBM

e Nivel intermediario
Daniel Ramos Bezerra de Alencar
Picos - PI

Nos ultimos anos, a maior parte dos problemas de geometria da OBM do nivel 3 tem
sido relacionada a concorréncias e colinearidades, que sdo o ponto forte das transformacoes
geométricas. No final deste artigo, veremos como essas ferramentas podem ser usadas
para resolver alguns problemas de geometria plana do nivel 3, que apareceram nas ultimas
versoes da OBM. Porém, antes dos problemas, enunciaremos alguns lemas que serao
uteis. A demonstracgao deles fica como desafio para o leitor e, no final do artigo, sao
dadas dicas de como demonstra-los.

Lema 2. O ponto A, o incentro de ABC, o ponto médio do arco BC do circuncirculo a
ABC que nao contém A e o ex-incentro relativo ao lado BC sdo colineares.

De agora em diante, neste artigo (ABC) denotard o circuncirculo do tridngulo ABC.

Definicao 1. Dado um triangulo ABC e um ponto P distinto dos vértices A, B e C,
definimos o triangulo pedal de P em relagdo ao triangulo ABC como o triangulo tal que
seus vértices sao 0s pés das perpendiculares de P aos lados do triangulo.

Um triangulo DEF € chamado de triangulo antipedal de P em rela¢io a ABC se ABC
€ o triangulo pedal de P em relagdo a DEF.

Definicao 2. Dado um triangulo ABC, o conjugado isogonal de um ponto T em relagdo
a ABC € obtido refletindo as retas TA,TB e TC em relacdo das bissetrizes internas de
ABC que passam por A, B e C, respectivamente. As retas resultantes sdo concorrentes
num ponto chamado de conjugado isogonal de T. FEssa definicao sé € vdlida se T nao
pertence aos lados do triangulo.

Lema 3. O triangulo pedal de um ponto P num triangulo ABC e o triangulo antipedal
do conjugado isogonal de P num triangulo ABC sdo homotéticos.

Lema 4. Sejam ABCD um quadrildtero inscritivel e P = AD N BC exterior ao (ABC).
Uma inversao com centro em P e raio igual d raiz quadrada da poténcia de ponto de P em
relacio ao (ABC) fard com que os inversos dos pontos A, B, C e D sejam respectivamente
os pontos D, C, B e A.

Lema 5. As reflexées do ortocentro em relagio aos lados do triangulo ABC e aos pontos
médios dos lados do triangulo estdo sobre (ABC).
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Lema 6. O ortocentro do triangulo ABC é o incentro de seu triangulo értico.

Lema 7. Sejam D, E e F os pontos de tangéncia do incirculo de ABC com os lados
BC, AC e AB. A reta de Euler do triangulo DEF € a reta que contém o incentro e o
circuncentro do triangulo ABC.

Lema 8. Seja D o ponto de intersecio das tangentes ao (ABC) por B e C. Entdo o
segmento AD é uma simediana de ABC, isto €, a reflexdo da mediana que passa pelo
vértice A sobre a bissetriz que passa pelo mesmo vértice.

Lema 9. O conjugado isogonal de um ponto P € o circuncentro do triangulo formado
pelas reflexoes de P nos lados de ABC.

Ao final, apresentaremos alguns encaminhamentos para demonstrar cada um desses
lemas.

Alguns problemas de geometria na OBM

A seguir enunciaremos com sua respectiva resolucdo alguns problemas que apareceram
nas provas da terceira fase da Olimpiada Brasileira de Matematica. Em alguns destes
problemas serdo usados os lemas enunciados na secdo anterior. Ressaltamos que em
outros problemas também serdo empregados teoremas classicos conhecidos, tais como o
Teorema de Brianchon, Teorema de Desargues, etc, que podem ser encontrados facilmente
na Wikipedia ou no livro de Coxeter e Greitzer [5].

Exemplo 4 (OBM 2003, Problema 3). Seja ABCD um losango. Sejam E, F, G e H
pontos sobre os lados AB, BC, CD e DA, respectivamente, e tais que as retas EF e GH
sao tangentes a circunferéncia inscrita no losango. Prove que as retas EH e FG sdo
paralelas.

Solucdo. Dado que AB é paralelo a DC, podemos assumir que estas duas retas se cortam
num ponto no infinito que denotaremos por M. De igual forma AD e BC se interesectam
num ponto no infinito que denotaremos por N. Tem-se que as retas EM, GM, HN e
FN (ou suas equivalentes AB, CD, AD e BC) sdo tangentes a circunferéncia inscrita no
losango. Entao, pelo Teorema de Brianchon aplicado no hexagono EM GHNF, se tem
que EH, MN e FG sdo concorrentes, isto é, EH || FG.

Uma outra ideia é usar o Teorema de Desargues: Pelo Teorema de Brianchon aplicado
no hexagono circunscritivel AEFCGH, se tem que AC, GE e HF sdo concorrentes num
ponto que denotaremos por P. Como esses segmentos sdo concorrentes, os triangulos
AHE e CFG estao em perspectiva. Portanto, pelo Teorema de Desargues, segue que os
pontos EHNFG, AH N CF, AEN GC séo colineares e, como AH || CF e AE || GC, tem-se
que EH || FG.



Fureka! 43 29

Exemplo 5 (OBM 2005, Problema 5). Sejam ABC um tridngulo acutingulo e F o seu
ponto de Fermat, isto €, o ponto interior ao triangulo ABC tal que os trés angulos ZAFB,
/ZBFC e ZCFA medem 120°. Para cada um dos triangulos ABF, ACF e BCF, € tracada
a sua reta de Fuler, ou seja, a reta que liga o seu circuncentro e o seu baricentro. Prove
que essas trés retas concorrem em um ponto.

Solugdo. Seja M o ponto pertencente ao circuncirculo (BFC) tal que o tridngulo BCM
seja equildatero. Como ZBCM = 60°, tem-se que /BFM = 60°, pois ambos olham para o
mesmo arco em (BFC). Desta forma, A, F e M sio colineares.

Sejam D o ponto médio de BC, G, o baricentro de BFC, O, o circuncentro de BFC e

G o baricentro de ABC. Considere uma homotetia de razao = centrada em D. Ela levard

o ponto A no ponto G, o ponto M no ponto O, e o ponto F no ponto G,. Portanto, G,
Oq e G4 sdo colineares. De forma analoga para os outros lados do tridngulo, as retas de
Euler de BFC, CFA e AFB concorrem no ponto G.

A
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Exemplo 6 (OBM 2006, Problema 1). Seja ABC um triangulo, P o pé da bissetriz
interna relativa ao lado AC e 1 seu incentro. Se AP + AB = CB, prove que API € um
triangulo isdsceles.

Solugdo. Sejam AP o prolongamento do segmento AB com tamanho AP e F o pro-
longamento de BP no segmento PC. Como AB + AP = BC, o triangulo PBC isésceles.
Como PBC é isosceles e BP é a bissetriz do angulo ZCBP, BF é a altura relativa ao
lado PC. Como PAP é isésceles, entdo ZIAP = /PPA e, consequentemente, PP || Al
Disso, tem-se que ZAGC = ZPPC e, como P estd na mediatriz de PC, tem-se que
/PCA = /PPC = ZAGC e, consequentemente, o tridngulo CAG ¢ isosceles.

B

I
M

C F N P’ G

Seja N um ponto sobre CP’ ¢ M um ponto sobre BP de tal forma que AN L P'C e
AM || P'C e consequentemente, perpendicular a BP. Como CAG é isésceles, N é o ponto
médio de CG e entdo, AM, AN, AC e AG formam um feixe harménico. Incidindo esse
feixe sobre BF, obtém-se que, por AN ser paralelo a BF, M é o ponto médio de IP. Disso,
e do fato de AM ser a altura relativa ao lado IP, tem-se que o triangulo AIP é isésceles.
n

Exemplo 7 (OBM 2006, Problema 5). Seja Q um poligono convezo de 2006 lados. As
1003 diagonais ligando vértices opostos e os 1003 segmentos que ligam os pontos médios
dos lados opostos sdo concorrentes, ou seja, todos os 2006 segmentos possuem um ponto
em comum. Prove que os lados opostos de P sdo paralelos e congruentes.

Solugdo. Sejam Pq,Pa,...,Pooe 0s vértices desse poligono e My, ..., M2oos 0s pontos
médios dos segmentos P1P2 , P2Ps, ..., PaoosP1, respectivamente. Como K/‘lz\fl,l =

% , tem-se que P1P2 || P1oo4P1005 €, consequentemente, hd uma homotetia
centrada em T, ponto comum das diagonais, e de razdao —k(k > 0) que leva Py a Pigo4,
P> a Pigos € My a Migp4. Porém, usando semelhangas equivalentes entre os triangulos

PiPii1T e Pii2003Pit2002T onde 1 =2,3,...,1003, segue que

TPiooa _ TProos _ _ TPaoos _ TP _x
TP, P2 TP1003  TP1004 ’
1
Da primeira e da tultima fracdo da igualdade anterior se tem que = k. Portanto, k =1

e os lados opostos do poligono sao paralelos e congruentes.
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P2006 P1006

Exemplo 8 (OBM 2007, Problema 5). Seja ABCD um quadrildtero convexo e sejam P
o ponto de intersegio das retas AB e CD, Q o ponto de intersegio das retas AD e BC e
O o ponto de intersegdo das diagonais AC e BD. Prove que se ZPOQ ¢é um dangulo reto,
entdo PO € bissetriz de ZAOD e QO ¢ bissetriz de ZAOB.

Solugdo. Pela construgdo do conjugado harmoénico, obtém-se que A, B, M, P formam
uma quadrupla harmoénica e, como ZMOP = 90°, h4 um circulo de Apolonio que passa
por M, O e P e, consequentemente, OM ¢ bissetriz de ZAOB. De forma anédloga, ON ¢
bissetriz de ZAOD.

Q

Exemplo 9 (OBM 2008, Problema 4). Seja ABCD wum quadrildtero ciclico e v e s
as retas simétricas d reta AB em relacao das bissetrizes internas dos angulos ZCAD e
ZCBD, respectivamente. Sejam P o ponto de intersecio de v e s e O o centro do circulo
circunscrito a ABCD. Prove que OP é perpendicular a CD.

Solugdo. Considere o caso em que T e s ndo sejam tangentes a circunferéncia. Sejam E e
F as intersec¢Oes de 1 e s, respectivamente, diferentes de A e B. Como ZEAD = ZCAB,
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tem-se que BE || CD. Como
ZFBA =180 — ZDBC — 2 x (£ZABD)

/BDA =180 —- ZABD — ZDBC — ZCAB,

tem-se que
/ZBAF = /BDA — /FBA = ZABD — ZCAB = ZABD — ZEAD = ZABE.

Portanto, AF || BE || CD. Dessa forma, a reta polar de P também ¢é paralela a CD e,
consequentemente, OP L CD.

D

Agora suponhamos que uma das retas T ou s é tangente a circunferéncia. Podemos
supor, sem perda de generalidade, que a reta r é tangente & circunferéncia. Pelo fato
de o dngulo entre a tangente e o segmento AD ser igual ao dngulo ZCAB e também é
igual ao dngulo ZABD, tem-se que AB || CD. Além disso, como o dngulo entre a reta s
e o segmento BC ¢ igual ao dngulo ZABD, que é igual ao dngulo ZCAB, tem-se que a
reta s também é tangente a circunferéncia. Dessa forma, a reta AB é a reta polar de P e,
consequentemente, OP L CD.
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Exemplo 10 (OBM 2009, Problema 5). Seja ABC um tridngulo e O seu circuncentro.
As retas AB e AC cortam o circuncirculo de OBC novamente em By # B e Cy # C,
respectivamente, as retas BA e BC cortam o circuncirculo de OAC em Ay # A e C2 # C,
respectivamente, e as retas CA e CB cortam o circuncirculo de OAB em A3 # A e
B3 # B, respectivamente. Prove que as retas AyA3, B1Bs e C1Cy passam por um mesmo
ponto.

Solucao. Considere a inversao com centro em O e raio OA. Como o circuncirculo
(AOC) passa por O, seu inverso é uma reta que passa por A = A e C = C, isto é, a reta
AC ¢ o inverso de (AOC). O inverso de A é a interse¢do do inverso do (AOC) com o
inverso de AB, isto é, a intersecdo da reta AC com (AOB) diferente de A, que é o ponto
As. Entdao A, e Az sdo inversos entre si, logo, a reta A;Az passa por O. Analogamente,
B1B3 e C;C; passam por O. Portanto, A2A3, B1B3 e C;C;, sdo concorrentes.

A

Bg CZ
Cy

B

Exemplo 11 (OBM 2010, Problema 4). Seja ABCD um quadrildtero convexo e M e N
0s pontos médios dos lados CD e AD, respectivamente. As retas perpendiculares a AB
passando por M e a BC passando por N cortam-se no ponto P. Prove que P pertence a
diagonal BD se, e somente se, as diagonais AC e BD sdo perpendiculares.

Solugdo. Considere uma homotetia de razao 2 centrada em D. Tal homotetia levara os
pontos M e N; respectivamente, nos pontos C e A, e o ponto P serd levado num ponto da
reta BD, chamado de P. Como MP L AB e NP L BC, tem-se que AP 1. BC e CP 1L AB.
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Como AP e CP sdo alturas do tridngulo ABC, P é o ortocentro de ABC e, portanto, BD
é perpendicular a AC.

A P/
: 4?’

D M

Para provar a volta, isto é, que, se AC e BD sao perpendiculares, entdo P pertence
a diagonal BD, pode-se usar uma ideia andloga a que foi usada acima. Porém, dessa
vez, note que os segmentos AC e XY sdo antiparalelos com respeito ao dngulo ZABC,
pois XY é paralelo ao segmento formado pelos pés das alturas relativas aos lados AB
e BC do tridngulo ABC. Segue que o quadrilatero AXYC é inscritivel e, pelo Lema
3, a inversdao de centro em B e raio igual a raiz quadrada da poténcia de ponto de
B em relagdo ao circuncirculo (AXY) fard com que X = A, Y =C, A =Xe C =Y.
Como ZBKA = ZBKC = 90°, tem-se que ZBAK = ZBCK = 90°. Portanto, K = P e,
consequentemente, B, K e P sdo colineares.

Observacgao 3. Ao enunciado deste problema apresenta deve ser adicionada a condigdo
que o dngulo ZABC seja diferente de 90°, pois caso contrdrio, o ponto P serd o préprio
B e, nesse caso, o segmento BD poderd ndo ser a altura do triangulo ABC.

Exemplo 12 (OBM 2011, Problema 5). Seja ABC um tridngulo acutangulo e H seu
ortocentro. As retas BH e CH cortam AC e AB em D e E, respectivamente. O circuncir-
culo de ADE corta o circuncirculo de ABC em F # A. Provar que as bissetrizes internas
de /BFC e ZBHC se cortam em um ponto sobre o segmento BC.

Solugdo. Sejam X a interse¢do de AH com o circuncirculo (ABC) e H o pé da altura
AH. Como ZBEC = ZBDC = 90°, o quadrilatero BEDC ¢é inscritivel. Considere a
inversao com centro em A e raio igual a raiz quadrada da poténcia de ponto de A em
relacdo a (BED). Pelo Lema 3, sabe-se que ela levard (ABC) a reta DE e (ADE) a
reta BC. Como AEHD ¢ inscritivel, o inverso de H pertence a reta BC e, portanto,
H é o inverso de H. Como F é a interseccdo de (ABC) e (ADE) diferente de A, o
inverso de F = F é a intersec¢io entre DE e BC. Como X pertence a (ABC), tem-se que
X =AHNDE. Da construgao do conjugado harmoénico, tem-se que F, H, D=Be E=C
formam uma quadrupla harménica e, consequentemente, F, X, B=D e C = E também
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formam uma quédrupla harmoénica. Portanto, o quadrilatero FXBC é harmoénico. Entao,
segue que as bissetrizes dos dngulos Z/BFC e Z/BXC se encontram no mesmo ponto em
BC (pois % = %), e, por simetria em relacdo ao segmento BC, a bissetriz de /ZBHC
também é concorrente no mesmo ponto em BC.

Uma segunda solugdo pode ser obtida usando o circulo de Apolénio. Continuando do
primeiro pardgrafo, seja HM a bissetriz de Z/BHC, entdo hd um circulo de Apolénio que
passa por H e M. Se F pertencer a essa circunferéncia, o problema esté resolvido, pois ela
é o lugar geométrico dos pontos P tais que PM é bissetriz interna de Z/BPC. Do Lema 4,
sabe-se que HH = HX e, como BC L HX e o centro do circulo de Apolonio estd na reta
BC, obtém-se que BC é a mediatriz de HX. Consequentemente, X pertence ao circulo de
Apolonio. Como F, X, B=E e C =D formam uma quidrupla harménica, obtém-se que
% = %, que, pela formula da distdncia entre pontos inversos, resulta em % = %.
Desta forma, F pertence ao circulo de Apolénio.

Exemplo 13 (OBM 2012, Problema 2). Dado um tridingulo ABC, o exincentro relativo
ao vértice A € o ponto de interse¢io das bissetrizes externas de /B e ZC. Sejam 1a, Ip
e Ic os exincentros do triangulo escaleno ABC relativos a A, B e C, respectivamente,
e X, Y e Z os pontos médios de Iglc , Icla e Ialg, respectivamente. O incirculo do
triangulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove
que as retas DX, EY e FZ tém um ponto em comum pertencente a reta 10, sendo I e O
o incentro e o circuncentro do triangulo ABC, respectivamente.

Solugdo. Pelo Lema 1 e do fato que as bissetrizes internas e externas sdo perpendiculares,
obtem-se que IaoIglc é o tridngulo antipedal de I com relagdo ao tridngulo ABC e que I
é o ortocentro de IpoIglc. Como o incentro é conjugado isogonal dele préprio, do Lema
2, sabe-se que seu tridangulo pedal e seu tridngulo antipedal em relagdo ao triangulo ABC
sao homotéticos, isto é, DEF e IoIgI¢c sdo homotéticos. Consequentemente, os tridngulos
XYZ e DEF sdo homotéticos.
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Como o circuncirculo (ABC) é o circulo dos 9 pontos do tridngulo IaIglc (pois A, B e
C s@o os pés das alturas do tridngulo IaIgIc), os pontos X, Y e Z pertencem a (ABC).
Como I é o circuncentro de DEF e O ¢é o circuncentro de XYZ, a homotetia que leva DEF
a XYZ também leva I a O. Como o centro dessa homotetia é o ponto no qual concorrem
DX, EY e FZ, ele é colinear com I e O. [

Exemplo 14 (OBM 2013, Problema 1). Sejam I' um circulo e A um ponto exterior a T.
As retas tangentes a T que passam por A tocam T em B e C. Seja M o ponto médio de
AB. O segmento MC corta T’ novamente em D e a reta AD corta I novamente em E.
Sendo AB =a e BC =0, calcular CE em fun¢do de a e b.

Solugdo.  Da forma como o quadrilitero BDEC foi construido, segue que ele é um
quadrilatero harmonico, pois

BD _AB_AC_CD
BE EA EA EC’

Entao, o feixe formado pelas retas CA, CB, CM e CE é harménico e, como M é ponto
médio de AB, tem-se que CE || AB, pois caso contréirio se eles se intersectam em E’
terfamos que E’, B, M e A formariam uma quadrupla harmoénica, o que implicaria que M
também seria ponto médio do segmento E’A. Desse paralelismo, obtém-se que B é o ponto
médio do arco CE e, consequentemente, BE = BC = b. Com isso, e como /BEC = ZBCA,
tem-se %ue os tridngulos CBE e ABC sdo semelhantes. Consequentemente, obtém-se que

ce=2.
a
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Exemplo 15 (OBM 2013, Problema 6). O incirculo do triangulo ABC toca os lados BC,
CA e AB nos pontos D, E e F respectivamente. Seja P o ponto de intersecio das retas
AD e BE. As reflexdes de P em relagio a EF, FD e DE sdo X, Y e Z, respectivamente.
Prove que as retas AX, BY e CZ tém um ponto comum pertencente a reta 10, sendo I e
O o incentro e o circuncentro do triangulo ABC.

n

Solugdo. Pelos Lemas 2 e 6, sabe-se que a reta IO de ABC ¢é a reta de Euler de DEF e
que o tridngulo 6rtico de DEF é homotético ao tridngulo ABC (pois ABC é o tridngulo
antipedal de I em relacdo a DEF).

Como os lados de XYZ séo paralelos aos lados do tridngulo értico de DEF (pois
os lados de ambos os tridngulos sdo perpendiculares aos lados de DEF), tem-se que os
tridngulos ABC e XYZ sao homotéticos. Pelo Lema 7, sabe-se que P é o ponto de Lemoine
de DEF. Pelo Lema 8, sabe-se que o conjugado isogonal de P (ponto Q) em relacdo ao
tridngulo DEF, isto é, o baricentro de DEF, é o circuncentro de XYZ. Por fim, como AX,
BY e CZ concorrem no centro da homotetia que leva XYZ em ABC (ponto K), tem-se
que K é colinear com o baricentro de DEF e com o ponto O, isto é, ele esta na reta 10.
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D
B

Uma outra ideia é usar quadruplas harmonicas. Sejam M = BC NEF, N = AD N EF,
T o pé da altura relativa ao lado EF do tridngulo DEF e X o pé da perpendicular de P em
EF. Como AD, BE e CF concorrem no ponto de Gergonne (P) do tridangulo ABC, tem-se
que M, D, B e C formam uma quadrupla harmoénica e, consequentemente, A, P, N e
D formam uma quadrupla harménica. Como TD L EF, hd um circulo de Apolonio que
passa por D, T e N e, portanto, EF é bissetriz do angulo ATP. Por simetria em relagao
a EF, obtem-se que os tridngulos PXT e XXT sao congruentes. Entao, EF é bissetriz do
angulo PTX e, portanto, X estd na reta AT. De forma andloga para Y e Z, tem-se que
AX, BY e CZ concorrem no centro da homotetia que leva o tridngulo értico de DEF no
tridngulo ABC, isto é, ele esta na reta I0.

Exemplo 16 (OBM 2014, Problema 6). Seja ABC um tridngulo com incentro 1 e
incirculo w. O circulo wa tangencia externamente w e toca os lados AB e AC em A e
Ay, respectivamente. Seja va a reta A1Ay. Defina g e vc de modo andlogo. As retas
TA, T € Tc determinam um triangulo XYZ. Prove que o incentro de XYZ, o circuncentro
de XYZ e 1 sao colineares.
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Solugdo. Considere que as tangentes comuns as circunferéncias w e wa, W e wWg, W e
wc se cruzam nos pontos M, N e P. Sejam H o ponto de tangéncia entre w e wa e D,
E e F os pontos de tangéncia de ABC com seu incirculo.

A homotetia que leva w em wa também leva FE em AjA;. De forma analoga pra
Wwpg e wc, obtem-se que os lados de DEF e XYZ sao paralelos e, consequentemente, DEF
e XYZ sao homotéticos. Portanto, o centro da homotetia que leva DEF em XYZ é colinear
com o circuncentro de DEF (que é o ponto I) e com o circuncentro de XYZ.

Como a tangente comum a w e wa divide os segmentos FA; e EA; em duas partes,
onde cada parte é igual a sua correspondente no outro segmento. Do Teorema de Tales,
essa tangente divide o segmento FZ em duas partes iguais. De forma anéloga, a tangente
comum a w e wp divide o segmento FZ em duas partes iguais. Entao, o ponto P divide
FZ em duas partes iguais. Consequentemente, F, Z e P sdo colineares e os tridngulos
DEF, XYZ e MNP sao homotéticos sob um mesmo centro. Entao, o incentro de MNP,
que é o proprio I, o incentro de XYZ e o centro da homotetia sao colineares. Portanto, o
incentro de XYZ, o circuncentro de XYZ e I sdo colineares.

Dicas para demonstrar os Lemas

1. Use uma homotetia centrada em A e veja a relagdo entre o incirculo e o ex-incirculo
nessa homotetia.

2. Faga marcacao de angulos e descubra um quadrildtero inscritivel.

3. Use a férmula da distancia entre pontos inversos.
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. Use uma homotetia centrada no ortocentro.
. Use quadruplas harménicas e descubra um circulo de Apolonio.

. Use o Lema 2 no ortocentro de DEF e o Lema 5 para descobrir relagées entre os

pontos notaveis de DEF e de ABC.

. Use a quadrupla harmonica formada por D, o ponto médio de BC e os pontos em

que o segmento formado por D e o ponto médio de BC cruzam (ABC) e depois
descubra um feixe harménico que parte de A. OBS: em [11], pode ser encontrada
uma demonstragao interessante usando outra quadrupla harmonica.

. Use a circunferéncia que passa por P e duas das reflexdes e faca marcagio de

angulos.
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Artigo: Teorema de Casey, a ida e a volta

e Nivel avancado
Régis Prado Barbosa
Célegio Etapa - Sao Paulo.

O Teorema de Casey traz resultados sobre configuragées muito complexas da geometria
plana. Tais configuracoes ja apareceram em testes de selecdo para a IMO e na prépria
IMO, como por exemplo, no problema 6 do ano de 2011. Resolver essas questdes sem
este teorema é praticamente impossivel, por isso recomenda-se ter conhecimento deste
resultado.

Teorema 2 (Casey). Sejam ', T2, T3 e 4 quatro circunferéncias num plano e ti o
comprimento do segmento entre os pontos de tangéncia da tangente externa comum ds
circunferéncias Ty e I5. A relagdo

ti3 -t =ti2 - tza +tig - to3

€ satisfeita se, e somente se, as quatro circunferéncias sao todas tangentes ou internamente
ou externamente a uma circunferéncia, ou sdo todas tangentes a uma reta do mesmo
lado.

Essa é a forma mais conhecida do teorema de Casey. Em sua forma mais geral
considera-se também casos em que algumas das quatro circunferéncias tangenciam a
quinta internamente e outras externamente. Nesses casos se duas das quatro circun-
feréncias tangenciarem do mesmo modo, ambas internas ou ambas externas, usa-se a
tangente externa tij na relagao. Caso tangenciem de modo diferente, usa-se tij que é o
comprimento da tangente comum interna. As demonstragoes sdo praticamente andlogas.
A nossa proposta é explorar apenas a forma mais conhecida.

Na figura a seguir as quatro circunferéncias sdo tangentes internamente a uma quinta

ﬂ'
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Para a demonstragdo, vamos usar inversao e alguns teoremas auxiliares. Se o leitor
nao estd familiarizado com esta técnica da inversido pode ler sobre o assunto em [3]. A
seguir enunciamos os teoremas que usaremos na prova do resultado principal.

Teorema 3. Dados dois pontos quaisquer P e Q no plano e P’ e Q' seus inversos com
respeito a uma inversio com centro O e raio r. A sequinte relagdo € satisfeita:

PQ —PQ
0P-0Q

Teorema 4. Dados quaisquer quatro pontos P, Q, R eS eP’, Q’, R’ e S’ seus respectivos
inversos com respeito a uma inversao de centro O e raio v, temos a sequinte relacdo:
P'Q’-R’S’ _ PQ-RS
P’S’. R/Q/ - PS - RQ.

Teorema 5. Considere duas circunferéncias 1 e T2 de raios 1 e v dispostas de forma
que existe tangente externa comum de comprimento t12. Uma inversdo de centro fora
das duas circunferéncias ou de centro dentro de ambas conserva a razdo entre o quadrado
do comprimento da tangente comum externa e o produto dos raios, ou seja:

2 2
to _ 43
Tt TiT
Demonstraciao. Considere as circunferéncias ', I'; e uma reta que passa pelos centros

de ambas e corta as circunferéncias nos pontos Py, Q1, P2 e Q2. Seja d a distancia entre
os centros. Logo,

P1P2-Q1Q2 _ (d4+11—712)(d—711 +712) _ dz—(T1 —1‘2)2 _ t%z
P]Q] -PzQz 21’1 -ZTZ 4T1T‘2 41‘11‘2.

Considere uma circunferéncia C3 ortogonal as circunferéncias C; e C; que corta Cy e
2 nos pontos Ry, S1, Rz, S2 como na figura. Vejamos que as linhas P1Ry, Q1S7, P2Ry e
Q25 sdo colineares.
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Seja H o ponto sobre a reta que passa pelos centros tal que C3H é a reta perpendicular a
C1C;. Considere o ponto X a interse¢ao das retas P1Ry e Q2S;. Definem-se os dngulos:

ax=ZC1P1Ry e p = £C2Q2S;.
Usando que a soma dos angulos internos do tridngulo AP1XQ2 é 180°, tem-se:
ZR1XS; =180° —a — f3,
e como P1Qq é didmetro da circunferéncia I'y:
ZP1R1Q = 90°.
Do fato que o triangulo AP;C1R;y é isosceles em Cq, segue que:
ZCiRiPr =a— LC1R1Q1 =90° —a = ZC1Q1R =90° —a = LR Q1H = 90° + «,

e pela ortogonalidade entre as circunferéncias 17 e I3, sabemos que ZC3R;C; = 90°.
Logo, observando os dngulos em torno do ponto Ry, podemos concluir que:

ZC3R1Q1 = a.

Analogamente, prova-se que:

£8;PaH =90° + B e ZC35,P, = B,
logo somando os angulos do pentdgono Q1R;C35,2P2, temos:

/R1C3S; =360° — 200 — 23 = 2 - ZR1XS;, assim X estd sobre a circunferéncia 3.
Por outro lado, podemos determinar ZC3R¢X.
ZP1R1Q1 =90° — £XR1Q1 =90° = ZC3R1 X =90° — «.
Como, AR C3X ¢ isésceles:
C3Ry = C3X — ZLC3XRy; =90° — x = ZXC3Ry = 2.
Se analisarmos os angulos do quadrilatero C3HQR;, obtemos
/HC3R; =180° — 200 = /XC3R; + ZHC3R; = 180°, portanto H, C3 e X

sdo colineares. Além disso, como /XC3R; = 2« é dngulo central de I3, temos /XS;Ry =
o, € assim

AXR] Sz ~ AXQ2P1 pOiS ZX82R1 = ZXP] Qz € 432XR1 = 4P1 XQz.



Fureka! 43 45

Logo seus lados sao proporcionais e disso:
XR1 - XPy = XQZ - XPr = Potr1 X = PO'Cr2 X,

portanto X estd no eixo radical de I e 5.

Notando que X pode ser visto como o segundo ponto de interse¢do de P1Ry com I3 ou
como o segundo ponto de interse¢do de Q252 com I'3. Os passos feitos até aqui permitem
concluir que:

P1R1,Q1S1,P2Rz e Q2S, passam por um mesmo ponto X.

Considere a inversdo de centro X de raio r = \/Potr1 X= \/Poter. Ja que X estd sobre
o eixo radical de I} e I, essa transformacgao leva os pontos Ry, S1, Ry e S» nos pontos
P1, Q1, P2 e Q2, respectivamente. Pelo teorema 3 segue

RiR2-S$1S2  PiP2-QiQ2 td,

R1S1 RS2 P1Q1-P2Qz  4rma’

Agora considere uma inversdo qualquer de centro fora de 1 e T2 ou dentro de ambas.
Ela levara I's em I'j. Novamente pelo teorema 3, tem-se:

R{RS - S1S% _ RyR2-51S;

RIST-R5S5H  RiSy-R2Sy”

Sabendo que a ortogonalidade entre as circunferéncias é preservada na inversao, sabe-se
que T é ortogonal a I'{ e a Iy, logo os passos indicados acima podem ser usados também
na figura invertida:

RiR;-S1S; _ 1,

R|S7-R}S,  4rir’

Fazendo uso dessas 3 equagoes, conclui-se que:

2 ;2 2 ;7 2
o _ o to _ 4o
4riry  4riry T omma Tv

O

Agora estamos aptos a demonstragdo do Teorema de Casey. Divideremos a demons-
tracao em duas partes:

Demonstracio. Mostraremos primeiro a volta do teorema, isto é, suponha que vale a
equagao entre as tangentes externas:

tiz -t =t2 - tag + tig - a3,

e provaremos que uma das trés afirmagoes sobre as quatro circunferéncias é verdadeira:
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e 530 tangentes internamente a uma circunferéncia;
e 530 tangentes externamente a uma circunferéncia;
e 530 tangentes por um mesmo lado a uma reta.

Suponha sem perda de generalidade que 14 é o menor raio. Considere a transformacao
que chamaremos de redugdo que mantem os centros C; das circunferéncias e diminui os
raios para 1 —14. Essa transformacao preserva a propriedade de haver uma circunferéncia
tangente a todas, isto é, antes e depois da transformagao existe uma circunferéncia que
tangencia as quatro circunferéncias.

E fécil verificar o caso da reta. Existe uma reta tangente a todas do mesmo lado se, e
somente se, existia antes da transformacao.

No caso em que as quatro tangenciam internamente uma circunferéncia, temos a
situacdo da primeira figura acima onde unicamente sdo mostradas duas dessas circun-
feréncias. Veja que a circunferéncia de centro A tangenciava as duas circunferéncias.
Diminuindo os raios, esta passa a conter o centro da menor circunferéncia e a tangenciar
a maior em outro ponto Bj.

Os comprimentos das tangentes externas comuns nao se altera, pois formam-se
paralelogramos. Considerando os casos possiveis apresentados na figura anterior, teremos:

EI=FHe EI || FH = é um paralelogramo = EF = HL

No caso de a tangéncias iniciais serem externas, temos a segunda figura. Os resultados
sdo andlogos, bastando lembrar que se deve aumentar o raio da circunferéncia que
tangencia as outras quatro ao invés de diminuir como feito na situagdo anterior.



Fureka! 43 47

Essa transformacéo torna a circunferéncia Iy um ponto C4. Considere a inversao de
centro nesse ponto e raio R qualquer. Essa transformacio, bem como a transformacao
anterior, preserva os angulos entre as figuras, ou seja, existe uma circunferéncia ou reta
com as propriedades citadas no enunciado do teorema apos a transformagao se, e somente
se, existia antes dela.

Tendo em vista que C4 esta fora das outras circunferéncias, pois ha tangentes externas
comuns, aplica-se o teorema 4 em todas as tangentes comuns entre as circunferéncias I,
I, e I'3. Os comprimentos antes e depois serdo relacionados pela equacao:

J4 as tangentes que envolvem C4 podem ser expressas usando semelhanca de tridngulos.
Para isso, considere uma tangente C4P; a uma das circunferéncias . Como a inversao
preserva os dngulos, C4P{ serd tangente a circunferéncia I'/. Considere a relagdo de
semelhanca dos tridngulos AC4P;Cy AC4P/K, onde K é o centro da circunferéncia I7.
Vale lembrar que K nao é o inverso do centro de TI3.

Por definicdo de inversdo, sabe-se que C4P; - C4P{ = R?, assim:

CaPi  GiPy N th T
C4P! KP; RZ 1/

1

Ty . .
e portanto tig = R, /T—l/ para 1 <1i < 3. Por hipétese, sabemos que
i

t13 - tag = ti2 - t34 + tig - t23.

Logo, substituindo essas equacoes na ultima equagao, obtemos:

li i !
T T3 T T T2 T T T2 T3
tsy /o7 Ry 2=ty o Ry ARty [
rer) T2 TeTh T3 T Thers

e desta forma t{ 3= t{ 2 +t£3. Agora, tomemos novamente a circunferéncia de menor raio
e a reduza a um ponto, diminuindo o mesmo comprimento no raio de todas as outras.
Essa transformagao néao altera o comprimento das tangentes externas ou a existéncia de
circunferéncia ou reta tangente comum as trés.

Devemos considerar trés casos, cada um tratando as situacoes em que um dos trés
raios T, T3 ou T3 é o menor dos trés.

e Se o menor raio for r;. Nesse caso, passaremos a ter em [] apenas um ponto.
Notemos que os pontos cujo comprimento da tangente em relagdo a uma certa
circunferéncia é fixo estdo sobre uma circunferéncia. Assim, para o ponto Cj
satisfazer a equacao ele serd um dos pontos de intersecdo de duas circunferéncias de
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centros nos centros de 'y e TJ e raios \/r{z + t{zz e \/rgz + t{32, respectivamente.
Elas podem ter nenhum, um ou dois pontos em comum. Observemos que elas
tém pelo menos um ponto em comum. Considere a tangente comum entre ')
e '}, o comprimento é t5;. Prolongue este segmento no sentido de I'; mais um
comprimento de t,. Seja X; o ponto sobre este prolongamento tal que a distancia
de X; ao ponto de tangéncia com Iy é tf,.

Xi

Cs

Os comprimentos dos segmentos desde Xy até os pontos de tangéncia com I'j e I
sdo iguais a t], e t}, + t53 = t15. Logo se houver apenas um ponto de intersegao
serd Xy = C} e se houver dois pontos X7 = C} ou X reflexdo de C; em relacio a
reta que passa pelos centros de I'; e I';. Em qualquer dos casos possiveis, teremos
as trés circunferéncias tangentes a uma reta, do mesmo lado.

Se o menor raio for ré. Passaremos a ter um ponto FZ’. Novamente, pelo argumento
dos pontos onde o comprimento das tangentes é fixado, sabemos que podemos ter
nenhum, um ou dois pontos com a propriedade citada para C5. Para verificar que
hé pelo menos um, consideremos a tangente externa I e I'y de comprimento t{5 e
o ponto X, que a divide em pedacos t], e t);.

X

C/
1 Cé

Assim, como feito anteriormente, teremos os casos em que Xz = C5 e em que C} é a
reflexdo de X, em relacao a reta que passa pelos centros. Novamente, em qualquer
dos casos possiveis, teremos as trés circunferéncias tangentes a uma reta, do mesmo
lado.

Se o menor raio for 3.

Completamente andlogo ao primeiro caso.
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Com isso, concluimos que as trés circunferéncias sdo tangentes a uma reta por
um mesmo lado e, ainda mais, que o ponto de tangéncia de I'; estd entre os pontos de
tangéncia das outras duas circunferéncias. Logo, ao voltar as redugoes de raio e a inversao
conclui-se que no inicio as quatro circunferéncias eram todas tangentes internamente a
uma circunferéncia ou tangentes externamente a uma circunferéncia ou tangentes a uma
reta pelo mesmo lado. Isso depende da posi¢ao final relativa entre as circunferéncias, a
reta e o ponto Cj. Sabe-se ainda que os pontos de tangéncia estdo em sentido horario
na ordem I, T2, I'3 e Iy ou na ordem Iy, Ty, I's e I, considerando as posicoes finais dos
pontos de tangéncia.

Passemos agora a demonstrar a ida, isto é, mostraremos a relagdo entre os comprimen-
tos das tangentes dado que existe uma circunferéncia tangente as 4 dadas. Demonstragoes
sem usar inversdo podem ser encontradas em [2] e [4], mas aqui serd apresentada uma
outra demonstragdo usando as ferramentas desenvolvidas. Os casos em que as circunfe-
réncias tangenciam a quinta circunferéncia internamente e que tangenciam externamente
sao analogos. Por isso sera tratado com detalhes apenas o caso em que as circunferéncias
tangenciam internamente e que tangenciam uma reta.

Novamente, suponha sem perda de generalidade que o raio r4 é o menor dentre os
raios e facamos o processo de redugao citado na demonstracao anterior. A circunferéncia
I’y passa a ser um ponto na circunferéncia O, que por sua vez é tangente a todas as
outras trés.
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Fagamos uma inversdo de centro Cy4 e raio qualquer. A circunferéncia O serd levada
em uma reta O’. As circunferéncias 'y, T, e I3 serdo levadas em circunferéncias tangentes
a O’ por mesmo lado, mais distante de C4 se a tangéncia inicial for interna e mais
proxima de C4 se a tangéncia inicial era externa.

E imediato verificar que:

t13 = t1; +to;.

Como ja vimos na demonstragdo da volta, isso é equivalente a equacéo:
tiz -t =t2 - taa + tig - 23,

Caso seja uma reta com a tangéncia do mesmo lado e estando os pontos de tangéncia na
ordem Iy, Ty, T3 e Ty, teremos:

ti3-tag =(ti2 +t23) - (tas +t34) =ti2-taz +t1o - taa + 135 +ta3 - t3a =
=t12-t3a+ (t12 +ta3 +t34) - taz =12 - t3s +t1s - t23

Assim, concluimos a demonstracao da ida e da volta. O
O

O anterior mostra a forma do Teorema de Casey enunciada no Teorema 1. A forma
geral para circunferéncias é enunciada a seguir como o Teorema 5.

Teorema 6 (Teorema de Casey - forma geral). Considere quatro circunferéncias I,
I, T3 e Ty tangentes a uma circunferéncia K, com todas contendo completamente K ou
todas contidas completamente em K. Seja Ty o comprimento da tangente comum externa
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entre as circunferéncias Ty e Tj se eles tiverem mesmo tipo de tangéncia em relagio a K,
ambas internas ou ambas externas, e da tangente comum interna se tiverem tangéncias
diferentes, uma interna e outra externa. Entdao considerando Ty, T2, T3 e Iy em sentido
hordrio, tem-se:

Tz Toa =Tz T3a + Tha - Tos.

Reciprocamente, se certas tangentes comuns entre quatro circunferéncias Ty, T2, T3 e Ty
satisfazem a equagdo
T2 T4 £ T3 Toa £ Tig - T23 =0,

com alguma combinacdo de sinais, entdo essas circunferéncias sdo tangentes a uma
circunferéncia K sequindo uma das seguintes possibilidades:

e Se todas as tangentes sdo externas, entdo todas tém mesma tangéncia em relacdo a
K, todas internamente ou todas externamente.

e Se todas as tangentes em relagdo a uma circunferéncia sdo internas e todas as
outras sao externas, entdo esta possui tangéncia diferente das outras trés.

e Se as circunferéncias podem ser pareadas de modo que dentro do par usa-se tangentes
externas e entre pares diferentes tangentes internas, entdo as duas circunferéncias
de cada par tem tangéncia do mesmo tipo e diferente da tangéncia do outro par.

Observe que a volta do teorema de Casey ndo considera todas as possibilidades de
tomar tangentes. Os casos abordados pela volta sdo os mesmos casos possiveis da ida.
Deve ser possivel caracterizar quais circunferéncias tem um mesmo tipo de tangéncia e
quais circunferéncias tem o outro tipo. Lembrando que hé apenas dois tipos possiveis,
tangenciar internamente ou tangenciar externamente.

Exemplo 17 (IMO/2011). Seja ABC um tridngulo acutdngulo com circulo circunscrito
I. Sejam 1 uma tangente a T e la, lg e lc as retas obtidas pelas reflexdes de 1 em relagdo
as retas BC, CA e AB, respectivamente. Mostre que o circulo circunscrito ao triangulo
determinado pelas retas La, lg e lc € tangente ao circulo T.

Solucdo. Vamos comecar com um lema:

Lema 10. Dado um triangulo ABC e uma tangente ao seu circuncirculo passando por
um ponto T no arco AB que ndo contém C, seja hy o comprimento da perpendicular pelo
vértice X d tangente dada, entdo:

vha -sen ZA + 1/ hg -sen ZB = \/h¢ -sen ZC.

Demonstragio. Considere a figura referente ao lema. Seja R o circunraio do triangulo

ABC
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ha

Usando o Teorema de Ptolomeu, que pode ser visto como Teorema de Casey onde cada
ponto pode ser visto como uma circunferéncia degenerada de raio 0, teremos:

CT-AB=AT-BC+BT-AC=
CT-2R- sen ZC =AT -2R-senZA +BT-2R -sen /B =
CT-senZC = AT -sen ZA + BT - sen Z/B.

Sabendo que: ZABT = ZATD = « (inscrito e semi-inscrito no arco AT). Teremos:

ha
sen o

= AT =2R-sen & = AT? = 2Rha = AT = \/2RhaA.

Analogamente, BT = y/2Rhy e CT = /2Rh.. Substituindo estas trés na equacio,
teremos:

CT-sen ZC = AT -sen ZA + BT - sen /B
v 2Rhc -sen ZC = 1/2Rha -sen ZA + v/2Rhp - sen /B
vVhe-sen ZC = +/ha -sen ZA + \/hg -sen /B

Agora voltemos para o problema. Defina os seguintes pontos:

A'=1aNnl, B'=1lgnlelc.nl
A =1g Nlc, B”"=1laNlceC’"=1aN1g.

Devido & construgio, A’ esta sobre a reta BC, B’ estd sobre a reta AC e C’ estd sobre a
reta AB, pois a reflexao destes pontos em relagdo aos respectivos lados seréo eles mesmos.
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c”

Vejamos que:

/ZA"C"B" =/A'C"B' = ZA"B'A’ — ZB’A’C” (4angulo externo)
=2-/CB'A’"—(180°—2-CA'B’) (Angulos das reflexdes de 1)
=2-(ZCB'A’+ ZCA'B’) — 180°
=2-(180°—«£C)—180°
=180° —2/C

segue que ZA”C"B"” =180° —2/C. Analogamente, os outros angulos sao dados por:
/A"B"C" =180°—2/B e /B"A"C" =180° —2/A.

No tridngulo A’B”C’, como A’B bissetriz externa e C’B bissetriz interna, B é o exincentro
relativo a C’. Logo, B”B é bissetriz externa do AA’B”C’ implicando que BB é a bissetriz
interna do AA’B”C’. Por analogia, temos que A”A e C”C também sao bissetrizes
internas do AA”B”C”. Essas trés bissetrizes concorrem em um ponto ] que é o incentro
do AAB”C"”. Observemos que:

/BJA = /B"JA” =180° — 1 ZC"B"A” — 3 Z/C"A"B"
=180° — 1 (180° — 2/B) — 3 (180° — 2£A)
= ZA+ /B =180° — £C.

Logo, ABC]J ¢ inscritivel e ] estd em T.

Seja JD a perpendicular a B”A"” por J e r := JD, o inraio do tridngulo A”B”C".
Sejam BE e BF perpendiculares por B as retas l. e 1, respectivamente. Como C’B é
bissetriz, temos BE = BF = hg, definida como no lema 1, usando como tangente a reta L.
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Para um ponto X fora da circunferéncia I', defina T(X) o comprimento da tangente por X
a circunferéncia T
Calculando a poténcia do ponto B” em relacao a T™:

BE D
sen (90° — /B) sen (90° — /B)’

T(B") = | he 7 :\/hB.r
cos ZB  cos ZB cos /B

Seja R” o circunraio do AA”B”C”, entao, usando lei dos senos:

AC!" —2R" .sen ZA"B"C"
= 2R" - sen (180° — 2/B)
=2R" - sen2/B
=4R"” - sen /B - cos ZB.

T(B//)ZZB//B~BH]$T(BH) _\/

portanto

Assim,

T(B”)-A”C"” =T . 4R" .sen/B - cos /B
=4R"\/r - v/hg sen Z/B.

Analogamente, teremos os produtos:

T(C”)-A”B” =4R"\/r-v/hcsen ZC

T(A"”)-B”"C’ =4R"\/r - v/ha sen ZA.
Agora temos ferramentas suficientes para aplicar o teorema de Casey. Considere
as circunferéncias, dadas pelos centros e raios, C1(0,R) =T, C2(B”,0), C3(C"”,0) e
C4(A”,0). Vejamos se a relacio das tangentes é satisfeita, isto é, queremos verificar se
T3 - Tog = T2 - T3q4 4+ T14 - T23. Para isso, vejamos que

Tiz-Taa =T(C")-A"B” =4R"\/t - y/hesen ZC.
De igual forma, T12-Tz4 =T (B”)-A”C"” = /hg -senZB e T14 - To3 = T(A")-B"C" =
4R"\/1 - \/ha sen ZA. Logo,
Ti2 T34+ Tia - To3 =4R" /7 (\/Esen /B4 v/ha -sen ZA)
— 4R T (\/Esenzc)
=Tz Taa.

Finalmente, pela reciproca do Teorema de Casey, existe uma circunferéncia K tangente
a estas quatro circunferéncia. Mas como C,, C3 e C4 sdo pontos, esta circunferéncia K é
o circulo circunscrito ao AA”B”C”. Sendo assim, o circulo circunscrito ao AA”B”C”
tangencia T [
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Problemas propostos

1.

(OBM/1996) Seja ABC um tridngulo equildtero inscrito em uma circunferéncia I'y;
[, é uma circunferéncia tangente ao lado BC e ao menor arco BC de I'7. Uma reta
através de A tangencia I em P. Prove que AP = BC.

(Teorema de Feuerbach, 1822) Sejam D, E e F os pontos médios dos lados BC, CA
e AB do AABC, respectivamente.

(a) Prove que o circulo S inscrito no AABC é tangente ao circulo N circunscrito
ao ADEF. Vale lembrar que este tltimo é o circulo dos nove pontos do AABC.

(b) Prove que o circulo exinscrito relativo ao lado BC também é tangente a N.

Seja ABC um tridngulo com incentro I e cujo circulo circunscrito é I'1. D é um
ponto arbitrario sobre o lado BC. T, é uma circunferéncia tangente aos segmentos
AD e DC, em E e F, respectivamente, e ao arco AC de I'1. Prove que E, F e I sao
colineares.

Seja I uma semicircunferéncia com didmetro AB e centro O. Uma reta perpendicular
a AB pelo ponto E € OB intercepta I' no ponto D. Uma circunferéncia, que é
tangente a DE e EF nos pontos K e C, respectivamente, é tangente ao arco AB no
ponto F. Prove que ZEDC = ZBDC.

As circunferéncias Q; e Q, tangenciam-se externamente no ponto I e ambas
tangenciam internamente uma terceira circunferéncia Q. Uma tangente externa
comum as duas primeiras corta a terceira em dois pontos B e C. Uma tangente as
duas por I corta Q num ponto A do mesmo de BC que o ponto I. Mostre que I é o
incentro do triangulo ABC.

(Problema de Thébault, 1938) Seja D um ponto sobre o lado AB do triangulo ABC.
A circunferéncia kq(O1,717) é tangente interiormente & circunferéncia k circunscrita
ao ABC, é tangente a AD em M e é tangente a CD. A circunferéncia k,(O3,12) é
tangente a k, é tangente a DB no ponto N e é tangente a CD. Seja r o inraio do
triangulo ABC e o angulo ZADC = «. Demonstrar que:

o o4
T=1 - cos? (z) + 712 - sen? (E) .

(Roménia TST/2006) Seja ABC um tridngulo acutangulo, com AB # AC. Sejam
D o pé da perpendicular por A e w o circulo circunscrito ao AABC. Seja w; o
circulo tangente a w e aos segmentos BD e AD. Seja w; o circulo tangente a w e
aos segmentos CD e AD. Seja 1 a tangente interior de wy e w; diferente de AD.
Prove que | passa pelo ponto médio de BC se, e somente se, 2BC = AB + AC.
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Teorema de Casey, a Ida e a Volta

8. (Hong Kong/2009) Seja o AABC um tridngulo retangulo com ZC = 90°. Seja CD

a altura relativa a C, com D sobre o lado AB. Seja w o circulo circunscrito ao
ABCD. Seja v o circulo dentro do AACD, tangente aos segmentos AD e AC nos
pontos M e N, respectivamente, e que também ¢é tangente ao circulo w.

(a) Mostre que BD-CN+BC-DM = CD - BM.

(b) Mostre que BM = BC.

9. (Banco IMO/1993) Considere um tridngulo ABC, de incentro I, e cujo circulo

circunscrito denota-se por I'1; I é uma circunferéncia tangente aos lados CA e CB
nos pontos D e E, respectivamente, e ao arco AB de I'1. Prove que I é o ponto
médio do segmento DE.

10. (Banco IMO/2000) Sejam D, E e F pontos sobre os lados BC, CA e AB, res-

pectivamente, do tridngulo ABC tais que o tridngulo DEF seja equilatero. Uma
circunferéncia I' tangencia a circunferéncia circunscrita ao tridngulo DEF, externa-
mente, e os segmentos CD e CE nos pontos L, M e N, respectivamente. Se P é um
ponto sobre I' tal que FP é tangente a I', mostre que FP = DM + EN.
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Introducao

Para motivar os resultados que vamos apresentar neste artigo, inicialmente vamos
apresentar um problema olimpico de geometria. Ao final vamos mostrar como as ideias e
ferramentas apresentadas neste artigo podem ser utilizadas para resolvé-lo.

Problema Inicial (problema 6 da OBM 2015 N3)

Seja ABC um tridngulo escaleno e X, Y e Z pontos sobre as retas BC, CA, AB,
respectivamente, tais que ZAXB = Z/BYC = ZCZA. Os circuncirculos de BXZ e CXY
se cortam em P # X. Prove que P estd sobre a circunferéncia cujo didmetro tem
extremidades no ortocentro (ponto de encontro das alturas) H e no baricentro (ponto de
encontro das medianas) G de ABC.
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A método de resolugdo Pontos que se movem (ou "Moving Points"em inglés) é
uma técnica para resolver problemas de geometria. A ideia bésica é que a partir de
um resultado para trés pontos em certo conjunto e algumas consideracdes podemos
generalizar o resultado para todos do conjunto. Essa ferramenta utiliza principalmente
conceitos e ferramentas da Geometria Projetiva como a razdo cruzada e as transformacoes
projetivas no plano.

Vamos apresentar essas ferramentas necessarias de Geometria Projetiva, enunciar o
teorema principal deste artigo e aplicar nas resolugbes de alguns problemas, incluindo
o problema inicial apresentado no comego desse material. Nesse artigo estamos abor-
dando o Pontos que se movem de maneira parcial, para ter acesso ao contetido completo
desta técnica o leitor consulte [01], que é a maior motivagdo deste texto. Caso o leitor
busque mais materiais de geometria para olimpiadas de matematica ou deseje se aprofun-
dar nas ferramentas de Geometria Projetiva apresentadas recomendamos que procure [02].

Plano projetivo

Uma classe de retas retrata uma direcdo no Plano Euclidiano, assim duas retas
sdo da mesma classe se, e somente se, elas sdo paralelas. O Plano Projetivo é obtido
a partir do Plano Euclidiano adicionando-se para cada classe de retas um ponto do
infinito ( ou ponto impréprio) que pertence a todas as retas daquela classe e uma
reta do infinito (ou reta imprépria) que é composta por todos os pontos do infinito.

No Plano Projetivo, podemos considerar que para quaisquer duas retas distintas no
plano, existe um ponto de intersecéo entre elas, mesmo se as retas forem paralelas. O
ponto do infinito sobre da reta r serd denotado por oco.

Razao Cruzada

Considere quatro pontos colineares A, B, C e D. Definimos a razado cruzada desta
quadrupla como:

CA DA
(A,B,C,D) —ﬁ*ﬁ

E importante destacar que utilizamos segmentos orientados como se fossem vetores.
Isto significa que se um sentido é positivo, entao o oposto é negativo e para quaisquer
pontos X e Y temos

YX = —-XY

Vale destacar também que algum desses pontos pode ser um ponto no infinito. Nesse
caso de maneira simplificada consideramos infinito sobre infinito em mdédulo igual a 1.
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Também podemos definir a razdo cruzada para quatro retas PA, PB, PC e PD
concorrentes no ponto P utilizando senos de angulos orientados.

) B ) _ sen(ZCPA)  sen(/DPA)
P(A,B;C,D) = (PA,PB;PC,PD) = sen(ZCPB) © sen(/DPB )

Teorema 7 (Razao cruzada sob perspectiva). P(A,B;C,D) € um feize de retas e A, B,
C e D colineares. Entdo

Demonstragao: Bastar usar Lei dos senos nos triangulos CPA, CPB, DPA e DPB e
cancelar os termos iguais.

|
Considere pontos A’, B’, C’ ¢ D’ colineares tais que estdao sobre as retas PA, PB, PC
e PD, respectivamente.

Pelo temos as seguintes igualdades:

(A)B)C)D) = P(A,B,,C,D) = P(A/,B/;C/)D/) = (A,)B/;CI)D/)

Denotamos esse resultado como perspectiva em P. Nota-se que a razao cruzada nao
varia com as transformagoes perspectivas.
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Teorema 8 (Razao cruzada num quadrildtero ciclico). Sejam A, B, C e D pontos numa

circunferéncia, e seja P um ponto qualquer nessa circunferéncia. Entdo P(A,B;C,D) é
constante. Dessa forma, podemos escrever (A,B;C,D) = P(A,B;C,D).

Demonstragao: Os angulos ZCPA, ZCPB, ZDPA e ZDPB nao dependem do ponto
P. Usando a interpretacdo de razao cruzada usando os senos, P(A, B; C,D) ndo depende
de P.
|
Podemos fazer a projecao dos pontos de uma circunferéncia sobre uma reta usando o
ponto P:

(A»B;C)D) = P(A>B;C»D) = P(A,»B/;C/»D/) = (A/)B/;C/)Dl)

Denotamos de maneira analoga a perspectiva em P por.

(A) B) C) D) = (A,) BI; C/) D/)

Pontos que se movem

A ferramenta principal deste artigo serd baseada na definicdo e no teorema a seguir.

Definicao: Seja J o conjunto dos objetos onde a razao cruzada é definida como retas,
conicas e feixes de retas. Sejam Cq,C; € J, a fungao f: C; — C, é uma transformacao
projetiva se preserva a razao cruzada, isto é, se para quaisquer pontos A,B,C,D € C;4
vale

(A,B;C, D) = (f(A), f(B); f(C), £(D))

Existe uma grande variedade de transformagoes projetivas no plano dentre as mais
frequentes temos:

o Dados uma reta 1, um ponto P e o feixe de retas que passam por P (Cp). A
transformacao de 1 para Cp que leva cada ponto X na reta PX. Notagdao: X — PX.
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e Dado uma conica y e um ponto P € y. A transformacao de y para Cp dada por
X — PX.

e Para qualquer ponto P. A transformacao de y para y dada por X — Y com
YePXNyeY#X

e Inversdo em relagdo a uma circunferéncia.

Teorema 9 (Pontos que se movem). Sejam f: Cy — C2 e g: Cy — Cy duas transfor-
magoes projetivas. Vale a equivaléncia f = g se, e somente se, f(A;) = g(Ai) para trés
elementos (geralmente pontos) distintos A1,Az e Az de Cy.

Demonstracao: A ida do teorema ¢é imediata. Vamos provar somente a volta.
Considere trés elementos distintos Ay, Az, A3 € Cy com f(A;) = g(A;) = Bi.

Para qualquer ponto A € Cy\(A1,A2,A3) existe um dnico ponto B € C, tal que
(A1,A2;A3,A) = (B1,B2;B3,B). Como as transformagoes sdo projetivas podemos
concluir que f(A) = g(A) = B.

|

Exemplo 18 (Olimpiada Nacional da Sérvia 2018). Seja ABC um trigngulo com incentro
I. Os pontos P e Q sdo escolhidos nos segmentos Bl e CI tal que ZBAC = 2/PAQ.
Se D ¢ o ponto de intersecdo do incirculo com o lado BC do triangulo ABC, prove que
/PDQ = 90°.

Solugdo. Seja /BAC = 2«. Considere a transformacao f : Bl — CI que leva cada ponto
P € BI para o ponto Q € CI tal que ZPAQ = . Veja que AP — AQ é uma rotacdo de
angulo fixo « e é uma transformacao projetiva, pois conserva a razao cruzada. Assim,
P — AP — AQ — Q é uma transformac@o projetiva. De maneira similar, definimos
g: BI — CI de modo que g(P) =Y tal que ZPDY = 90°. Essa transformaciao também é
projetiva.
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Pelo Teorema [9] basta provar que f = g para trés pontos distintos P e o resultado
segue.

e Se P =B, entdo f(B) =¢g(B) =1L
e Se P =1 entao f(I) = g(I) = C.

e Se P e Q sdo os incentros dos triangulos ABD e ACD, respectivamente, entao
f(P) = g(P) = Q pois

ZBAL  ZIAC _ /BAC _

ZPAQ = ZPAL+ ZIAQ = ~5— + =5 5
/BDI  /ID
/PDQ = ZPDI+ZIDQ = ~5— + TC =90°

Exemplo 19 (IMO 2010). Seja ABC um tridngulo, I o seu incentro e I' a sua circunfe-
réncia circunscrita. A reta Al intersecta novamente I' no ponto D. Sejam E um ponto
no arco BDC e F um ponto do lado BC tais que

ZBAF = ZCAE < %ABAC

Seja G o ponto médio do segmento IF. Mostre que as retas DG e EI se intersectam
sobre T.
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Solugao. Vamos considerar que o ponto E pode se mover no arco BDC sem a restrigdo
sobre ser menor que metade do 4ngulo A. Sejam K; € EINT e K; € DGNT, com Ky # E
e K, # D, basta provarmos que Ky = K,. A transformacao f: E — K; é projetiva, pela
simples projecao de I' para si mesmo por .

Observe que E — AE — AF — F é uma transformacao projetiva ja que AE — AF é
uma reflexdo em relagdo a bissetriz interna AD e preserva a razdo cruzada. O ponto G é
resultado de uma homotetia de centro I e razao % e, como D €T, o K, é resultado de
uma projecao sobre I'. A transformacao F — G — K, é projetiva. Assim, g: E — K3
dada por E+— AE — AF — F— G — K; é uma transformacio projetiva.

Portanto, basta mostrar que f = g para trés pontos distintos E.

e Se E = C, temos que F = B e K; é o ponto médio do arco AB. E bastante conhecido
em olimpiadas de matemaética que DI = DB e K;I = K;B entdao DK; é mediatriz
BI, logo G € DK;. Logo Ky =K.

e Se E = B, é andlogo ao caso anterior.

e Se E =D, temos que {F} = ADNBC e K; = A entdo G € AD. Nesse caso, temos
Ky =K; =A.

Exemplo 20. Sejam P e Q conjugados isogonais no triangulo ABC. Ponto D € a projegio
ortogonal de Q em BC. A circunferéncia de diagmetro PA e a reta AQ intersectam o
circuncirculo de ABC em K# A e em T # A, respectivamente. Prove que os pontos K,
D eT sao colineares.




Fureka! 43 65

Solugdo.  Vamos fixar o ponto T e mover Q sobre a reta AT. Note que P se move
sobre uma reta fixa r. Vamos considerar duas transformagoes f: Q — Ky e g: Q — Ky,
onde K7 € TD N (ABC) e K; € (PA) N (ABC) diferentes de T e A. Podemos notar que
Q — D +— TD — K; é uma transformacdo projetiva usando projecoes.

Vamos usar a inversdo para mostrar que P — K, é uma transformagao projetiva.
Considere a inversdo de centro A. Cada ponto X # A é levado em X’. A inversdo leva r
em 7. A imagem de (ABC) é a reta B’C’. A circunferéncia de didmetro AP ¢é levada na
reta perpendicular a v por P’.

A transformacdo P’ — K} é projetiva, j& que P’ se move sobre 1 que é fixa. Como a
inversdo preserva a razao cruzada, P — P’ — K} — K3 é uma transformagdo projetiva.

Vamos dar trés posi¢gdes do ponto Q e o leitor pode verificar que Ky = K, em cada
caso.

[ Q:T
e Q=oc0aT.

« Q=BCNAT.

Resolugao do Problema Inicial

A circunferéncia com didmetro HG serd denotada por (HG). Defina A’ como a
segunda intersecdo de AG e (HG). Defina B’ e C’ de maneira andloga. Esses sao os
HM points (ou Humpty points) e usaremos algumas propriedades desses pontos. Para se
familiarizar com elas o leitor pode estudar em [03].

Afirmacao: A’ € (AYZ).
Vamos considerar duas transformacoes Y +— Z e Y — Z’' com Z' € (AYA')N AB
diferente de A. Veremos que elas sdo projetivas.
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e Veja que a circunferéncia (ZBC) é reflexao de (YBC) em relacao a BC. Sendo Y’ a
reflexdo de Y, os pontos C, B, Z e Y’ sdo conciclicos usando o angulo fixo dado e a
reta ZY’ tem direcdo fixa, j4 que ZCY’Z = ZCBA que é fixo (ou o suplementar
deste angulo dependendo da configuragdo). Dessa forma, Y — Y’ — Z preserva
razao cruzada.

e A reta A’Z’ é uma rotagao de A’Y em relagdo a A’ com angulo ZYAZ' = 180° —
/BAC fixo. Assim Y — A'Y — A’Z’ — Z' preserva razao cruzada.

Pelo Teorema [J] basta verficar que a transformagdo é igual para trés posigoes do
ponto Y. O ponto A’ estd na circunferéncia de didmetro AH e nas circunferéncias por A
tangentes a BC em B e C.

e BY L AC. Nesse caso BY e CZ sao alturas, (AYA') tem didmetro AH e Z' = Z.
e /BYC = /B. A circunferéncia (AYA’) tangencia BCem Be Z=Z7' = B.

e /BYC =180° — ZC. Anélogo ao caso anterior.

Analogamente, vale a afirmacgao para B’ e C’. Considere as duas transformagoes
f:X—> P comP € (BB'X)N(HG)e P’ #B',eg: X —=P” comP” € (CC'Y)N(HG) e
P” # C’, dada por X — Y +— P”. Elas preservam razdo cruzada. Para P’, seja R o segundo
ponto de intersecao de XP’ com (HG). Temos Z/RP’'B’ = 180° — ZXP'B’ = /XBB’ ¢ fixo.
O ponto R é fixo e as transformagoes sdo projecoes centradas em R. Para P” é anédlogo.
Basta provarmos que f = g e teremos P’ = P”. Para isso, basta considerar trés posigoes
para o ponto X.

e AX L BC. Temos P/ =P” =H.
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e X€ (BB'C')NBC. Temos P =P" =C".

e Xe (BB’A’)NBC. Temos P’ =P" =A".

Mais algums problemas interessantes

1.

Seja ABC um triangulo com circuncirculo (O). A tangente de (O) em A intersecta
a reta BC em P. O ponto E é um ponto arbitrario sobre a reta PO e D estd na
reta BE de modo que AD L AB. Prove que ZEAB = ZACD (considere angulos
orientados ou de maneira simples que sdo iguais ou somam 180°).

Seja triangulo ABC com circuncirculo (O) e incirculo (I). X é um ponto arbitrario
em BC. A reta que passa por I perpendicular a IX intersecta a segunda reta
tangente de (I) paralela a BCem Y. AYN (O)=Z#A. T é o ponto de tangencia
entre A-incirculo mixtilinear e (O). Prove que X, Z e T sdo colineares. Para mais
informagoes sobre circulos mixtilineares o leitor por consultar [02].

Seja AB um didmetro da circunferéncia w. 1 é a reta tangente de w em B. Tome
dois pontos C e D em 1 tal que B estd entre C e D, respectivamente. Os pontos E
e F sdo os segundos pontos de intersecdo de AC e AD com w. Os pontos H e G
sdo os segundos pontos de intersecdo de CF e DE com w, respectivamente. Prove
que AH = AG.

. Seja (O) um circulo e L uma reta. A reta perpendicular a 1 que passa por O intersecta

(O) em A e B. Sejam P; e P2 pontos em (O). Sejam também P;A N1 = Xy,
PiBNl=X;, PANL=Y; e P,BN1=Y; Prove que (AX;Y7) e (AX2Y32) se
intersectam sobre (O).

No tridngulo ABC com /B obtuso e AB # BC. Sejam O o circuncentro e w
circuncirculo de ABC. N é o ponto médio do arco ABC. (BON)NAC = (X,Y),
BXNw=P#BeBYNw=Q # B. Prove que P,Q e reflexdo de N sobre a reta
AC sdo colineares.

Resolucgoes

1.

Resolugao: Movendo o ponto E sobre a reta PO, a transformacéo f : E — D,
preserva a razao cruzada, onde D € BE tal que D1A L BA, pois é uma projecao
sobre a reta r perpendicular para AB por A. Considere também a transformacgao
g: E — Dy, onde DA L BA e ZACD, = ZEAB, temos que AE — CD;
preserva a razao cruzada pois é uma composi¢ao de translacao e rotagao, assim
E— AE — CD3 — D, é projetiva.

Basta provar que f = g para trés posicoes de E.
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« E=ABNPO = f(E) =¢g(E) =A.
e« E=0= f(E) = g(E) = By simétrico de B em (O).
« E=P=1f(E)=¢g(E) =rNnBC.

2. Solugdo. Movendo o ponto X sobre a reta BC, a transformagdo f: X — TX — Z;
preserva a razao cruzada, onde Z; € TX N (O) difrente de T, e observe também que
a transformagdo g: X — IX — IY — Y = AY — Z, também é projetiva, definindo
Z; € AY N (O) diferente de A.

Basta verificar que f = g para trés posigdes de X.

« X=B=f(X)=¢g(X) =B.

e X=C=f(X)=g(X)=C.

e X=o00pc = f(X) =S tal que S € (O) e TS || BC. Por outro lado, g(X) = S,
pois Y é o simétrico do ponto de tangéncia de (I) com BC, os arcos BT e AS

possuem mesma medida, AS é isogonal a AT e, por homotetia e propriedades
do mixtilinear, A, Y e S sdo colineares.
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3. Solugdo.  Neste problema temos dois pontos variaveis sobre a reta 1, porém
para resolver o problema basta provar que AH = AG fixando um desses pontos e
movendo o outro sobre a reta. Vamos fixar o ponto C (o ponto E também fica fixo)

e vamos mover o ponto D.

e )

Consideramos as duas transformagoes f : D — Gi, onde G; é a reflexdo de H

em relagdo a AB, e g: D — G3, onde G, € FC N w diferente de F. Perceba que
f:D—-ED—H— Gyeg:D— AD — F — CF — G, preservam a razao
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cruzada de acordo com as transformacoes vistas anteriormente.

Basta verificar que f = g para trés posi¢oes de D.

« D=B = f(D) =g(D) =B. Uma forma de vizualizar esta situagdo é pensar
no limite quando D se aproxima de B.

e D = C’, simétrico de C em relacao a B, = f(D) = ¢g(D), por simetria.

e D =00y = f(D) =¢g(D) =E, pois F= A e H é o segundo encontro da
perpendicular a AB por E com w.

4. Solugao. Fixe o ponto Py e mova Pq sobre (O), como no problema anterior. Veja
que Y7 e Y3 sdo fixos. Considere as duas transformagdes f: Py — Ky e g: Py — Ky,
onde K7 € (X7AY7) N (0) e Ky € (X2AY2) N (0O) diferentes de A fora nos casos
degenerados.

Quadrilatero AY;X K é ciclico entdao ZAK;X; = 180° — LAY X, é constante, logo
o ponto Z € K1X; N (0) é fixo. Agora note que f: Py — AP — X7 = ZX; — Ky
preserva a razdo cruzada. Analogamente g também é projetiva.

Observamos que ZP, 1 AB e Z é a reflexdo de P2 em relagdo AB, pois:
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LAP2Z =180° — ZAK X7 =180° — (180° — ZAY1X;) = LAY Xy = 90° — LZBAP;

Basta provar que f = g para trés posicoes de Py.

e Pi=A=f(P1) =g(P1) =Ps.

e Py =P, = f(P1) = g(P1) =T onde M é o ponto médio do segmento Y1Y;
e T € AMN (0) diferente de A. Vale destacar que M é o circuncentro do
tridngulo Y1P2Y, e ZMPyY; = ZMY,P; = ZBAP; e MP; é tangente a (O).

e Py =Z=1f(Py) =g(P2) =A.

5. Solugdo. Sejam M a segunda intersecdo de NO com (O) e N’ a reflexdo de N
sobre a AC. Fixe os pontos A, C e O e varie o ponto X sobre a reta AC. Veja que
N, N’ e M também sdo pontos fixos. Os pontos B e Y sdo os segundos pontos de
intersecao da circunferéncia (OXN) com (O), fora em caso degenerado. Observe
que OX || PM, pois ZPMN = 180° — ZXBM = £ZXON. Vamos trabalhar as duas
transformagoes f: X +— Q e g: X +— Q7 onde Q7 é a segunda interse¢iao de PN’ e
(0).

Usando a ferramenta de inversao sobre (O), como no Exemplo 03, a transformacao
f: X=X =Y =Y~ Q éprojetiva. J& que OX || PM entdo X — OX — PM —
P é uma composicao de proje¢des e uma translacdo e preserva razao cruzada. Como
N’ é fixo, g : X — P — Q; também é uma transformagio projetiva.
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Pontos que se movem!

Sejam (ON) a circunferéncia de didmetro ON e (ON) N AC ={Z;,Z;}. Suponha
que NZ7 e NZ; cruzam (O) novamente nos pontos Py e Py, respectivamente. Basta
provar que f = g para trés posicoes do ponto X.

e« X =27 = f(X) = g(X) = P,. Nesse caso, B =N e como OZ; e OZ, sdo
perpendiculares a NZ; e NZ;, respectivamente, Z1Z; é base média de P1P,
e N/ estd sobre P1P;.

e X =275 =f(X) =g(X) =P;. Anélogo ao caso anterior.

e X =A = f(X) = g(X) = C. Temos um caso degenerado e uma forma de
vizualizar é pensar no limite quando X se aproxima de A. Temos B=X=A
e podemos tomar P usando o paralelismo OX || PM. Temos Q = C. Resta
apenas provar que P, N’ e C sdo colineares. Veja que ZNCP = ZNMP =
/ZNOX = ZNOA = 2/NCA = ZNCN' usando angulos em circunferéncia e a
simetria de N e N’ em relagao a AC.

Problemas propostos

. (USA IMO TST 2019) Seja ABC um tridngulo e sejam M e N os pontos médios

de AB e AC, respectivamente. Seja X um ponto tal que AX é tangente ao circun-
circulo de ABC. Denote wg a circunferéncia por M e B tangente a MX e w¢ a
circunferéncia por N e C tangente a NX. Prove que wg e wc se intersectam sobre
a reta BC.

2. (USA IMO TST 2012) Num tridngulo acutdngulo ABC, com ZA < /B e ZA < ZC.

Seja P um ponto varidvel no lado BC. Os pontos D e E estdo nos lados AB e AC,
respectivamente, tais que BP = PD e CP = PE. Prove que enquanto P se move

sobre o lado BC, o circuncirculo do tridangulo ADE passa num ponto fixo diferente
de A.
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Artigo: Racionalizando o Logotipo da OBM

e Nivel Avancado

Rafael Tupynambda Dutra
Belo Horizonte - MG

Figura 1: Versao do logotipo da OBM com uma corrente de 6 circulos. Os ntimeros
representam a curvatura (inverso do raio) de cada circulo.

O logotipo da Olimpiada Brasileira de Matematica consiste em uma corrente de
Steiner de n circulos (n = 5) coloridos, todos tangentes a um dado circulo interno e a um
externo. Neste artigo, mostraremos que com n = 6 (e, também, com n =4 ou n = 3, mas
ndo com n = 5), é possivel obter figuras em que os raios de todos os circulos sdo racionais.
Estudaremos algumas propriedades interessantes dessas construgoes no que diz respeito
a dlgebra, a geometria e até & teoria dos nimeros. Por exemplo, na Figura [} note que as
somas das curvaturas de circulos opostos coincidem (9433 = 12430 = 18424 = 3(19-5)),
as retas que passam pelos centros Eocis e E12c24 sdo paralelas e os 6 circulos coloridos
tém curvaturas multiplas de 3. Por fim, mostraremos que essa construcgio se estende
como um fractal, permitindo o empacotamento de infinitos circulos de curvaturas inteiras.

Obviamente, se encontrarmos uma corrente de Steiner em que os raios de todos
os circulos sdo racionais, suas curvaturas também serdo racionais e, multiplicando as
curvaturas pelo denominador comum, obtemos uma versao em escala da figura com todas
as curvaturas inteiras. E conveniente definir a curvatura do circulo externo com sinal
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negativo, simbolizando que o “interior” deste circulo é, na verdade, a parte exterior da
figura, contendo o ponto do infinito. Dessa forma, os interiores de todos os 8 circulos na
Figura [[] s3o disjuntos.

Propriedades Algébricas

Uma corrente de Steiner, como o logotipo da OBM, pode ser construida aplicando-se
uma inversdo a uma figura originalmente simétrica, como ja detalhado em um artigo da
49 edigao da Revista Eureka! [B]. A Figura mostra essa configuracéo original para uma
corrente de 6 circulos. Para as equagoes, serd conveniente trabalhar no plano complexo.
Definindo a raiz sexta da unidade w = e%, 0s 6 circulos da corrente sdo posicionados
com centros em wX, para k € {0,1,2,3,4,5}. Eles tém raio 1/2, assim como o circulo
interior, enquanto que o circulo exterior possui raio 3/2. No caso geral, os raios dos n
circulos da corrente sdo sen I, enquanto que o raio do circulo interno é T —sen = e o do
circulo externo 1+ sen 7.

S—

Figura 2: Disposic¢do inicial simétrica de n = 6 circulos. O centro de inversdo z =

% - zie 31 foi utilizado para obter Figura

Vamos posicionar o centro de inversdo z no interior do circulo interno da Figura

Dessa forma, a inversao levara o circulo interno da Figura[2no circulo externo da Figurall]
e vice-versa. Por exemplo, o centro de inversao z = % — zie 31 permite a obtencao das
curvaturas inteiras mostradas na Figura

Para estudar a inversao de um circulo, considere a Figura [3] Ao aplicar uma inversao
2

de centro z e raio de inversdo p, o ponto x é levado em x’ que satisfaz [x’ —z| = bf’fz‘.
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02

==k O raio do novo circulo

Da mesma forma, y ¢ levado em y’ que satisfaz [y’ —z| =
v/ =(x"—z|— |y’ —z|) /2 é entdo

Figura 3: Inversdo de um circulo.

2 2 2
r,:;< P P ) p’r (14)

z—wl -7t lz=wl+1/) |z—wPZ—12

Da mesma forma, podemos calcular a posigdo do centro do novo circulo v (que nao
é resultado da inversdo do centro original w). Uma homotetia de centro z e razao r//r

leva w em v, de forma que
/

v:z+%(wfz) (15)

Usando essas férmulas, podemos obter os seguintes teoremas sobre a corrente de
Steiner resultante. A notacdo Splae,ai;bo,...,bn_1] é usada para se referir a uma
corrente de Steiner cujos n circulos possuem curvaturas bo,...,bn_1, nesta ordem, sendo
a. e a; as curvaturas dos circulos externo e interno. Em geral, cada corrente possui 4n
tais representacoes, ja que podemos escolher o circulo inicial da corrente, o sentido de
rotacdo na corrente e a ordem entre a. e aj.

Teorema 10 (Correntes de Steiner de 6 circulos). Uma corrente de Steiner de 6 circulos
com curvaturas dadas por Sglae, ai;bg, b1, b2, bs, by, bs] satisfaz:

bo + b3 =by; +bs =bs + bs (16)

bo +bs +bs =by + b3 + bs (17)

bo+b7 +by+b3+by+bs =9ae+ ay) (18)
bé+b$+b%+b§+bﬁ+b2:ﬂ(ae+ai)2+9aeai (19)

4
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Demonstrag¢io. Como todas as equagoes a serem provadas sdo homogéneas, podemos
assumir sem perda de generalidade que o raio de inversdo é p = 1. As curvaturas podem
ser diretamente calculadas invertendo a equagao (|14).

Para o circulo externo, usamos w =0 e r = 1/2, obtendo
2 ]
Qe =2Jz]" — 5
2

Note que escolhemos um ponto z interior ao circulo interno, de modo que |z| < 1/2
e a equagao para a. satisfaz a convencao a. < 0. Vamos a seguir calcular as outras
curvaturas em fung¢io do valor de a.. Para o circulo interno, usamos w =0e r = 3/2,

para obter

a.f_%||2+§f4_ae
LT T3E T T

Aqui, tivemos que realizar uma mudanga de sinal, j4 que |z| < 3/2, mas a curvatura
do circulo interno a; precisa ser positiva.
Para os 6 circulos restantes, utilizamos w = w

kK er=1/2, de forma que

b= 2fz— 0t - 3 =2(z-0") (-7Y) -3

2 2
Usando zZ = |z|* e w®@ = |w]? =1, obtemos
b = ae +2—2 (@ z + w*z) (20)

Para obter as equacdes e , basta usar w* + w**3 = 0 para calcular
b +bxiz = 20, +4 = 3((le + (li)

Analogamente, usando w* + w2 4+ w*** =0, a equacio segue. Resta provar
a equacao . Temos
5 5 ,
D> b= ((ae +2)2 —4(ae +2) (@ 2+ 0 z) +4 (@*z + 0*2) )
k=0 k=0

5 kx .2 5 2k s
Como ) }_,w"* =0, o termo do meio é nulo. E como } |, w* =0, o tltimo termo
se reduz a

5
Y 4(@ 2+ w*2)" =6- 827 = 24a. + 12
k=0
Assim, temos

5
> b2 =6(ac +2)% +24a. +12 = 6% +48a. + 36
k=0
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Por outro lado, o lado direito da equacao vale
9(ae +2)* 4 3a.(4 — a.) = 6a2 +48a. + 36
O

Note que, se fixarmos as curvaturas a. e a; dos circulos externo e interno, as
equagoes — sdo b equagdes envolvendo as 6 varidveis bo, ..., bs. Assim, hd apenas
1 grau de liberdade restante para determinar essas 6 curvaturas. Intuitivamente, isso
faz sentido, uma vez que fixados os circulos externo e interno, a posicao de um circulo
na corrente determina a posicdo dos demais. Perceba que, mesmo sem fixar a. e ai, as
equagoes e ja impdem 3 condigdes sobre as 6 variaveis by,...,bs, restando
apenas 3 graus de liberdade para escolhé-las.

E possivel demonstrar que a férmula equivalente & equacio para correntes com
n =5 circulos é

V5

o que imediatamente implica que no caso n = 5 nao ha solugoes em que as 7 curvaturas
sejam inteiras. Na verdade, algo mais forte pode ser provado.

bo+bi+by+bs+bs cos’§ aetar (1 2 aeta
5 Csen? % 2 2

Exercicio 1. Mostre que na corrente Sslae, ai;bo, b1, bz, b3, bal, as 5 curvaturas by, by, bz, b3, by
s6 podem ser todas racionais se elas forem iguais.

Talvez ainda mais surpreendente que as equacdes apresentadas no Teorema [10] seja o
fato de que elas continuam validas quando as curvaturas sio substituidas pelos produtos
entre curvatura e o nimero complexo que representa o centro de cada circulo.

Teorema 11 (Correntes de Steiner de 6 circulos: centros). Uma corrente de Steiner
Selae, ai;bo, b1, ba, bz, by, bsl cujos centros dos circulos sao dados por ze, zi; 20, 21,22, 23, Z4, Z5
no plano complexo satisfaz:

bozo + b3zzz = byz1 + byzg = brzy + bszs (21)
bozo + bazy + bszg = b1z7 + b3zz + bszs (22)
bozo + bi1z7 + brzy + b3z3 + bayzg + bszs = 9((1922 + (liZi) (23)

81
bozo + b1z1 +b 27.2 + b%z% + b2 24 + b525 = —(aeze + aizi)z + 9ae0aiZezi (24)

4
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Demonstrag¢io. A equagao pode ser escrita como

1 1 1
F WZ‘F ( *Z)

A partir dela, podemos calcular os produtos para o circulo externo

QeZe = (e —2)z

aizy = a-—i—% z
1~1 — 1 3

Para os circulos da corrente, temos

e para o circulo interno

bz =brz+2 (wk — Z)
de forma que

brzi + bri3ziys = 3(ae + ai)z — 4z = 3(aeze + aizi)

Isso demostra as equacoes e (23). Similarmente, para demonstrar (22)), fazemos

9 9
brzk + bri2zkt2 + brazira = E(ae +ai)z—6z= E(aeze + aizi)

Resta demonstrar (24). Temos

5 5
> bizi =) (biz? —4biz® +4bw*z +42%)

k=0 k=0
A partir de (20)), é possivel mostrar que

2
Zbkw lpz —3(3a; + ae)z

de forma que

Z bkzk < (ae + al) +9aca; —36(ae +ai) —12(3a; + ae) +24> z?

5
Z ( (ae + ai)? + 9aca; — 48a. — 72a; + 24) z?
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Ja o lado direito de é igual a

81 2\? 2
<4 <ae2+ai+3) +9(ae —2) (ai+3>>zz

= (T(ae +ai)? 4+ 9aca; —48a. — 72a; + 24) z?

Propriedades Geométricas

Vamos agora usar as propriedades fornecidas pelos Teoremas e para inferir
aspectos geométricos da corrente mostrada na Figura[l] A Figura [4 mostra uma versio
rotacionada da mesma corrente, com escala ajustada de forma que o circulo externo seja
unitario.

Essa figura tem muitas propriedades geométricas interessantes. Por exemplo, re-
presentando por ¢, o centro do circulo de curvatura m, temos que as retas ¢_5Cq3 €
m sao paralelas, assim como o par de retas m e m, e também o trio de
retas C_s5C3¢, CoC18 € C12C24. Interessantemente, o paralelismo das retas (W e m)
decorre diretamente do fato de que esses dois pares de circulos vizinhos apresentam razao
2 entre eles: 18/9 = 24/12 = 2. Surpreendentemente, outras propriedades geométricas
de interesse também decorrem desse fato, como mostraremos no Teorema [I2]

Defini¢do 3. Uma corrente de Steiner de 6 circulos é chamada pareada se puder ser
representada como Sglae, ai;bg, by, b2, bz, by, bs] com g—(‘) = g—‘s‘ =2.

Na verdade, usando as equagoes (|16 e (17), encontramos condigoes suficientes mais
fracas para que uma corrente seja pareada.

Exercicio 2. Mostre que se uma corrente Sglae, ai;bgo, b1, b2, b3z, by, bs] satisfaz E—(‘) =
by

by com bo %+ bs, ela é pareada.

Exercicio 3. Mostre que se uma corrente Sglae, ai;bo, b1, b2, b3z, by, bs] satisfaz E—(‘) =2,
ela é pareada.

Teorema 12 (Correntes pareadas). Uma corrente de Steiner composta por 6 circulos
Sslae, ai;bo, by, b2, b3, ba, bs] pareada com E—(‘) = E—‘S‘ = 2 cujos circulos sGdo chamados
Ce, Ci;Co,Cq,C2,C3,C4,Cs5 com centros ze,zi;20,21,22,23, 24,25 Satisfaz as sequintes
propriedades geométricas:

1. A reta %021 e a reta <7:4z5 sdo paralelas.
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Figura 4: Versdo rotacionada da Figura onde os centros dos circulos sao dados

8 4 : 2,2 /3; 11,2 /3 5

por c.5 =0, c19 = —75 57\@1,09—5—&—5\@1,013— 75 T 5V31i, c30 = =3,
- _26_ 2 /3 — 13 1./34 -1 _1./3;
C33=—53— 13 31, ¢4 = 73 31,012—1 3 3.

2. O ponto de tangéncia To1_entre Co e C1 e o ponto de tangéncia T4 5 entre C4 e Cs
formam uma reta To 1T4 5 perpendicular ds retas (7:021 e (7:425 e, portanto, tangente
aos 4 circulos.

3. A reta i5)0T2,3 definida analogamente é paralela das retas ,(’2021 e ,%47.5.

4. Sendo Py o outro ponto de intersecio da reta 2011 com Cq e P4 o outro ponto de
intersecdo da reta (2425 com Cyq4, a reta P1P4 contém os centros zo e z3.

Demonstracdo. Primeiro vamos provar que se uma inversao leva um circulo da corrente
em outro, essa inversdo necessariamente preserva o circulo interno e o circulo externo
tangente a ambos. Tal inversao precisa estar centrada no centro homotético externo E
dos dois circulos (vide Figura [p)).

Imagine que tragamos uma reta qualquer pelo ponto E, que intersecta os dois circulos
nos pontos P, Q, Q’ e P’. Existe uma inversdo de centro E que leva P em P’ ¢ Q em Q'
(pares anti-homoélogos). E existe uma homotetia de centro E que leva P em Q' e Q em
P’ (pares homdlogos).

Os tridngulos PO;1Q e Q’O,P’ sdo isésceles (raios) e semelhantes, ja que a homotetia
leva um no outro. Logo, as retas W e P’O; se encontram em um ponto T, tal que o
tridngulo PT,P’ é isdsceles. Assim, existe um circulo centrado em T, que tangencia os
dois circulos nos pontos P ¢ P’. O mesmo argumento prova que existe um outro circulo
tangente aos dois circulos originais em Q e Q’. Como a inversdo transforma P < P’ e
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Figura 5: Inversdo de centro E transforma P < P’ e Q & Q’.

Q < Q’ e preserva tangéncias, concluimos que a inversdao precisa preservar o circulo
interno e o externo.

Aplicamos essa concluséo ao teorema da seguinte forma. Seja E o centro homotético
extern(ﬂ dos circulos Cy e Cs (vide Figura @ A inversdo Ig de centro E que transforma
Co & C5 é tal que C, & C, e C; & Ci. Mas, fixando-se os circulos externo e interno, a
posicao de um circulo da corrente determina as posi¢oes dos outros. Logo, Ig transforma
C; & C4 e Cy & C3. Assim, o ponto E também é o ponto homotético externo dos
circulos Cy e C4. Dessa forma, uma homotetia Hg de centro E e razao E—Z = g—‘]‘ leva Cs

em Cp e C4 em Cq, 0 que implica que as retas Eom e §4Z5 sdo paralelas.

P
Par RGN

21

Figura 6: Uma inversdo Ig de centro E transforma C. < C., C; & C;, Co <« Cs,
Ci & C4 e C2 & C3. Uma inversao negativa Ig de centro R transforma C; « Cg,
Co<—)C3, C] HC4€C2(—)C5.

Agora note que tanto a homotetia Hg quanto a inversao I¢ precisam levar o ponto
de tangéncia T4 5 no ponto de tangéncia T 1. Mas a homotetia leva um ponto de um

1 Assumimos aqui by # bs. O caso by = bs precisa ser tratado separadamente.



Fureka! 43 33

circulo em seu par homélogo, enquanto que a inversao leva em seu par anti-homélogo, de
forma que elas s6 podem coincidir nos pontos de tangéncia. Assim, a reta que passa por
E, T4 5 e To,1 precisa tangenciar os 4 circulos, sendo perpendicular as retas (Z_oz1 € Z4Z5.

Agora, usamos as equagoes , e para definir o ponto R como

. bozo + bzzs . bi1z1 +bazy . byzy + bszs _ QeZe +QiZi

R= = = =
bo + b3 b1+ bs by + bs Qe + a;

Esse ponto R é, por defini¢do, o centro homotético interno dos pares (Co, C3z), (Cy,Cs)

e (C,,Cs). Trés homotetias de centro R e razdo negativa —E—g, —lb’—l ou —E—i podem ser

usadas para levar Cop em C3, C; em Cy4, ou C; em Cs, respectivamente. Enquanto que
uma homotetia de centro R e razao positiva —2—2 leva C; em Ce.

Além disso, existe uma “inversao negativa” (inversdo composta com reflexao) Iz de
centro R que transforma C; <& C.. A inversdo negativa [g precisa levar a corrente de 6
circulos em uma outra corrente de 6 circulos, sendo que as retas que unem seus centros
ao ponto R precisam ser preservadas. A tnica possibilidade é que a inversdo negativa Ig
transforma Co & C3, C; < C4, C; & Cs.

Agora note que uma homotetia de centro R e razao —E—A leva C; em C4, enquanto
que uma homotetia de centro Ts o com a mesma razao negtiv —E—‘; = —g—l leva Cy em

. S— . N ) . - .
Cs. Assim, a reta RTs o precisa ser paralela as retas £021 e £4z2. Mas a inversio negativa
Ig leva Ts o em T> 3. Logo, a reta =5 oT> 3 é paralela as retas (2_021 e 2425.
bl y g ) y y p
A seguir, usamos o fato de que a inversao Ig mantém fixos Ts o & Ts 0 e To 3 & T3
para concluir que esses dois pontos estdo a mesma distancia de E e, portanto, a mesma
distancia da reta To 1T4 5, que é perpendicular a i5’oT2,3 e passa por E. Por fim, note

que, como b b ) To,1 é o ponto médio entre zo e Py e, similarmente, T4 5 é o

bo bs

P . S, - ~
onto médio entre zs e P4. Assim, a reta P1P4 ¢é a reflexdo da reta EOZ5 em relagdo a reta
io)1T4,5 e, portanto, contém o ponto T, 3 e o ponto E. Como a inversao I¢ transforma
C, & C3, concluimos que essa reta i51 P4 contém também os centros z; e z3. O

Propriedades Numéricas

Agora vamos estudar o problema de encontrar correntes de Steiner de 6 circulos
Selae, ai;bo, b1, ba, bz, by, bs] com todas as curvaturas inteiras. Para tanto, procuramos
solucoes inteiras para as equagoes , , e . Como bg+by+by = %(ae +ai),
precisamos ter a. + a; = 0 (mod 2). Além disso, temos o seguinte resultado sobre as
curvaturas médulo 3.

Teorema 13 (Mdédulo 3). Uma corrente de Steiner Sglae, ai;bo,b1,ba, b3, ba, bs] em
que todas as 8 curvaturas sao inteiras precisa satisfazer bg = by =by =b3 =by =bs =

0 (mod 3).
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Demonstragao. A equagao (|19) exige que
bi+b7+b3+b3+bi+b2=0 (mod9) (25)

Além disso, pelas equagoes e , precisamos ter

bo+bs+bs=b;+b3+b5=0 (mod9) (26)
e, pelas equacoes e , precisamos ter
bo+b3=b;+bs=by+bs=0 (mod 3) (27)

Provaremos que essas condigoes s6 podem ser satisfeitas se todos os by forem multiplos
de 3. Por , sabemos que bé + b§ s6 pode ser congruente a 0 ou 2 modulo 3.
Analogamente para b% + bﬁ e b% + bé. Por , precisamos ter todos os bﬁ congruentes
a 0 moédulo 3 ou todos os bi congruentes a 1 médulo 3.

Suponha, por absurdo, que exista uma solu¢do em que os by nao sdo todos multiplos
de 3. Entdo nenhum deles pode ser multiplo de 3. Por , descobrimos que precisamos
ter bp = by = by (mod 3) e by = b3 = bs (mod 3). Sem perda de generalidade,
podemos assumir bg = by =bs =1 (mod 3) e by = bz =bs = —1 (mod 3).

Escrevendo bg =3upg+1,b2 =3us+1, by =3us+1, b7y =3u; —1, b3 =3uz — 1,
bs =3us — 1, a equacgéo nos diz que

Wwtuw+uw+l=u+us+us—1=0 (mod 3)
enquanto que a equacao nos dé
—Up—Uy —Ug+U+uz+us—1=0 (mod 3)

Absurdo: logo, todos os by tém que ser multiplos de 3. O

Por |D a média aritmética dos by vale %(ae + ai), que é um nimero inteiro e

multiplo de 3. Chamando essa média de 3c e usando as equagoes e , podemos
escrever bg =3(c—d—e), by =3(c—e), b =3(c+4d), b3 =3(c+d+e), by =3(c+e),
bs = 3(c—d), para certos inteiros d e e. Com essa representacio, as equagoes e
sdo automaticamente satisfeitas.
As equacgoes e podem ser combinadas em uma tnica equagdo quadratica na
variavel a, cujas solugdes sdo a. e a;. Temos
bo+ by +br+b3+bs+bs

Qe +ai = 5 =2c

g D3I +DPI+bI+bT+bS  (bo+ by +batbs+ by bs)?
eldi — -

? 36
aea; = 6¢2 +4d? + 4e? + 4de — 9c? = —3c? +4d? + 4e? + 4de
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Assim, a equacido a? —2ca — 3c? + 4d? + 4e? + 4de = 0 tem solugdes a € {a., ai}.
O discriminante da equacio é A = 16(c? — d?> — e? — de). entdo, para termos solucdes
inteiras, c> — d? — e? — de precisa ser um quadrado perfeito. Procurando solucdes com
todos os by positivos, a primeira solugao € a trivial c =1, d = e = 0, que gera a corrente
S6[-1,3;3,3,3,3,3,3] (Configuragio simétrica como a da Figura[2).

Figura 7: A corrente de Steiner Sg[—2,10;3,6,15,21,18,9] mostrada a esquerda como

resultado de uma inversao de centro z = % — 21—8\@ i e & direita com coordenadas c_, = 0,
2 4 . 1 2 11 4 . 13 8 .
Clo = —%5 +75V3i,¢3 = 3,0 = —5, C15 = —735 + 15V31, ca1 = —37 + 57V31i,

C]gz—g-Fg 3"L,C9=—%+g 31.

A primeira solugdo ap6s a trivial ocorre com ¢ =4, d = 1, e = 2 e se trata da corrente
S¢[—2,10;3,6,15,21,18, 9], mostrada na Figura Iﬂ Essa também é uma corrente pareada
(6/3 =18/9 = 2), entdo muitas de suas propriedades geométricas ji estdo descritas pelo
Teorema [[2

Essa corrente também tem mais propriedades interessantes. Primeiramente, vemos
que 0s centros c_z, €3 € Cg sdo colineares (1/2 =1/3+1/6). Além dos circulos pareados
m , também a reta (cm—c15> é paralela a reta m) . Além disso, temos paralelismos entre
€¢_2C9, C10C18 € CgC15, entre C_2C1g € €3Co, entre C_2C15 € €3C1¢ € entre (6600.16) e w

A corrente Sg[—5,19;9,12,24, 33,30, 18] das Figuras|l|e 4| é a segunda menor solugao
nao-simétrica, que pode ser obtida comc=7,d=1, e = 3.

Exercicio 4 (Correntes de Steiner de 4 circulos). Mostre que uma corrente de Steiner
de 4 circulos com curvaturas dadas por Salae, ai;bo, by, b2, b3l satisfaz:

bo+ by =b; + b3 (28)
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bo+b1 +by+b3z =2(ae + a;y) (29)
2 2 2 23 2
by + b7 + b3 + b3 :i(ae-f—ai) +2aca; (30)
Exercicio 5. Mostre que uma corrente de Steiner Sp[de, ai;bo,...,bn_1] comn circulos

$6 pode ter todas as n+ 2 curvaturas inteiras se n € {3,4,6}.

Figura 8: A corrente de Steiner S4[—1,7;2,2,4,4] mostrada & esquerda como resultado de

3-2v2)(1—i o
% e a direita com coordenadas c_1 =0, c; = 41

uma inversao de centro z = 2

e =+5 + IV2i, ¢7 = 2V21i

Para n = 4, a menor solugao inteira é a corrente S4[—1,7;2,2,4,4] mostrada na
Figura J& a solugdo S4[—2,16;3,6,11,8] mostrada na Figura El é a menor solugao
ndo-simétrica. Ambas apresentam circulos diametralmente opostos (1/1 =1/2+1/2,
1/2 =1/3+1/6), além de circulos vizinhos com razdo 2 (4/2 =2, 6/3 = 2), mas aqui
isso nao implica as propriedades geométricas como no caso n = 6.

Uma propriedade interessante das correntes com n =4 é que nelas cada um dos 6
circulos é tangente a exatamente 4 circulos vizinhos, entao todos os circulos desempenham
o mesmo papel. A corrente da Figura [0} por exemplo, poderia ser igualmente denominada
S413,11,—2,6,16,8] ou S4[6,8;,—2,3,16,11].

Empacotamentos de Apolonio

A seguir, mostraremos que uma corrente de Steiner com curvaturas inteiras, como

a Sg[—5,19;9,12,24,33,30,18] das Figuras [1] e 4} pode ser usada para construir um
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S~ |

Figura 9: A corrente de Steiner S4[—2,16;3,6, 11, 8] mostrada & esquerda como resultado

. - 19-12v2)(11=51) .. .
de uma inversao de centro z = % e & direita com coordenadas c_, =0,

3.1./79; 1 2 7 4.4 . /; 11 /55
Cle =—3+73 21,C3:§,c6:—§,c11:—ﬁ+ﬁﬁ1,c8:—z+§ 21

empacotamento de circulos de Apolonio como o da Figura [I0] onde todos os infinitos
circulos possuem curvaturas inteiras. A construcao se da da seguinte forma:

A partir de uma corrente inicial Sglae, ai;bg, b1, b2, b3, bs, bs], construimos uma
nova corrente constituida de 6 circulos Sglae, af;bo, b1, b5, b5, b}, bi] que possui em
comum o circulo externo C. e dois circulos vizinhos da corrente Cy e Cy, mas agora
com um novo circulo interno C; e uma nova continuacao de 4 circulos C5, C5, C}, CS.
Assim, por exemplo, preservando o circulo externo (—5) e dois circulos vizinhos (9 e 12)
na Figura obtemos uma nova corrente Sg[—5,27;9,12,36,57,54, 30] com novo circulo
interno (27), que também pode ser vista na mesma figura.

Também é possivel preservar o circulo interno e procurar por uma corrente com um
novo circulo “externo”. Por exemplo, preservando o circulo interno (19) e os mesmos dois
vizinhos (9 e 12), podemos obter uma nova corrente Sg[19,99;9,12,180, 345,342,174],
que é um tipo de corrente em que todos os circulos tém curvaturas positivas e, portanto,
ndo possui um circulo “externo” no sentido usual. Geometricamente, os 5 novos circulos
encontram-se dentro da regido delimitada pelos trés circulos originais.

Esse procedimento pode ser repetido infinitas vezes, dando origem ao fractal da
Figura[I0] Mostraremos a seguir como obter as curvaturas e centros dos novos circulos.

Teorema 14 (Corrente conjugada). Dada uma corrente de Steiner de 6 circulos
com curvaturas Sglde, ai;bo, b1,b2, b3z, bg, bs] € possivel construir uma nova corrente
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Figura 10: Empacotamento de Apolonio baseado em uma corrente de Steiner de 6 circulos
Se[—5,19;9,12,24,33,30,18].
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Sslae, af;bo, b1, bs, b4, b4, bi] que tem os circulos Ce, Co e C1 em comum. Além disso,
se a corrente original tinha todas as curvaturas inteiras, a nova corrente também terd.

Demonstragao. Para encontrar a nova corrente, a ideia é escrever as equagoes (16), (17), (18)
e (|19) somente em termos das curvaturas que serao preservadas (ae, bp e by) e da curva-

tura interna a;. A partir das equagoes , e , podemos escrever

3
b, :E(ae—i-ai)—bo—kb] (31)
bz =3(ae +ai) — by (32)
bs = 3(ae + ai) — by (33)

3
bs :E(ae+ai)+b0*b1 (34)

Substituindo em , obtemos

45 81
5 (e + ai)? —6(ae + ai)(bo +by) +4(bd + b7 —boby) = 7 (e + ai)? 4+ %a.a

7(@e = a1)* = 6(ac + ai)(bo +b1) +4(b3 + bT — boby) =0

Se as curvaturas originais forem inteiras, by e by sdo multiplos de 3. Entao temos a
seguinte equagao de segundo grau com coeficientes inteiros em aj:

8 8 16
a? — <2ae—|-3(bo +b1)> ai+a§—§(bo+b1)ae+7 (bg + b7 —boby) =0

Essa equacao possui duas raizes inteiras: o primeiro valor ja conhecido de a; e um
segundo valor a{ que pode ser calculado como

8
a{:2a2+§(bo+b1)—ai (35)

Uma vez conhecido o novo valor de aj, as equacdes (31)), ([32), e podem ser

usadas para calcular os novos valores de by, b3, bs e bs:

3
b} :E(ae—l—a{)—bo—&-m (36)
b} =3(ae +ai) —bo (37)
bs =3(ae +aj) — by (38)
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Pelo Teorema [I1] todas as equagdes se mantém validas quando substituimos as
curvaturas pelos produtos entre curvatura e o centro do circulo, de forma que as equa-

coes (). G, @D, @ e (B nos dio

8

aiz{ =2acze + g(bolo +biz1) — aizi (40)

3
bjz) = E(aeze + aiz{) —bozo + bz (41)
b3z3 = 3(aeze + aiz{) — bozo (42)
bizy = 3(acze + azi) — biz; (43)

3
525 = z(aeze + aiz{) + bozo — b1z (44)

As equacgoes 1' nos dao um procedimento direto para calcular as curvaturas e os

centros dos novos circulos, permitindo a construgéo de desenhos como o das Figuras[I0]e[IT]
O

Note que, quando um par de vizinhos satisfaz E—L = 2, tanto a corrente original quanto
a corrente conjugada Sglae, af;bo, b1, b5, bs, b}, bl] sdo pareadas. Assim, é possivel ver

vérias correntes pareadas nas Figuras[l(] e

Exercicio 6. Estude as correntes Sglde, ai;bo, b1, b2, b3, ba, bs] que satisfazem E—é =2e
E—‘S‘ = % Mostre que as retas que unem os centros dos circulos de razdo 2 e % sdo paralelas.

Um exemplo pode ser visto na corrente Sg[—2,18;9,3,18,39,45,30] da Figura .

Ao final do artigo, mostramos mais 4 exemplos de empacotamentos de Apolonio,
baseados nas seguintes correntes de Steiner:

e Sel—1,3;3,3,3,3,3,3], a corrente totalmente simétrica
o S4[—1,7;2,2,4,4], a corrente da Figura

o S4[-2,16;3,6,11,8], a corrente da Figura [I]

e S3[—2,34;3,6,7], uma corrente de 3 circulos

Note que mostramos 3 exemplos de empacotamentos contendo as curvaturas —2,
3e6: umcomn =6, um com n =4 e um com n = 3. Os empacotamentos com
n = 3 sdo bem conhecidos na literatura matematica, sendo chamados simplesmente de
empacotamentos de circulos de Apolonio inteiros. Os empacotamentos com n = 4 ji
foram chamados de empacotamentos de 3-circulos de Apolénio inteiros [B]. Isso porque
podem ser construidos adicionando-se 3 circulos de cada vez. Por exemplo, no caso de
S4[—2,16;3,6,11, 8], podemos comecgar com os 3 circulos —2, 3, 6, depois adicionar 8, 11,
16, depois adicionar 14, 19, 24, etc.
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Figura 11: Empacotamento de Apolonio baseado em uma corrente de Steiner de 6 circulos
Sel—2,10;3,6,15,21,18,9].
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Olimpiadas ao redor do mundo

A partir desta edicdo esta de volta a secio Olimpiadas ao redor do mundo, um
espago onde o leitor terd a oportunidade de conhecer alguns problemas de destaque
em diversas olimpiadas pelo mundo afora. Convidamos os leitores a enviar solugdes.
Nas préximas edigdes também estard de volta a se¢do "Como é que faz?", onde serdo
publicadas as solugoes corretas dos problemas desta secao e outros que forem enviados
por nossos leitores. As solugdes dos problemas desta secdo devem ser enviadas para o
email (contato@associacaodaobm.org).

1. (MATHCOUNTS) Se a, b e ¢ sdo nimeros inteiros positivos tais que

11 1 6
a b ¢ 7

qual é o valor de a+b+c?

2. (USAMO-2019) Seja N o conjunto dos inteiros positivos. Considere C o conjunto
de todas as funcoes f: N — N que satisfazem a equagao

f(n) vezes
para todos os inteiros positivos mn.

(a) Mostre que todas as fungoes em C sdo injetivas.
(b) Existe alguma fungéo em C tal que f(2020) = 20217
(¢) Encontre uma fungdo em C tal que f(2020) = 1000.

3. (VJIMC 2019) Seja M uma matriz invertivel n x n tal que suas entradas séo

numeros inteiros. Definimos a sequéncia Sm = {M;}°, pela recorréncia Mg = M,
Misq = (MiT)in para i > 0.
Encontre o menor inteiro n > 2 para o qual existe uma matriz normal com entradas
inteiras e tamanho n X 1 tal que a sua sequéncia Syq nao é constante e tem periodo
P =7, isto é, M; = Mi 7. (MT é a matriz transposta de M. Uma matriz quadrada
M ¢ tida como normal se MTM = MMT).

4. (China) Sejam a, b, ¢ niimeros reais positivos. Prove que

5v5+ 11
—a

> bc.

(a+b)(b+c)la+b+c)>
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5. (Franga) Sejam a, b niumeros naturais tais que:

4a® +a=3b% +b.
Mostre que b — a é um quadrado perfeito.

6. (Berkeley) Suponha que zg,z1,...,2n—1 sd0 nimeros complexos tais que zy =
e?k7m/2 para k =0,1,2,...,n — 1. Prove para qualquer niimero complexo z, tem-se
que

n—1
Y lz—zl >
k=0

7. (Albania) E dado um tridngulo ABC cujo circuncentro é o ponto O e o seu ortocentro
¢ o ponto H. Se AO = AH determine a medida do angulo ZBAC.

8. (Singapura) Para a,b,c,d > 0 tais que a + b = c+ d = 2, prove que:

(a® +c?)(a? + d?)(b* + ¢?)(b* + d?) < 25.
9. (Roménia) Determine todas as fungdes f: R — R que satisfazem a relacio
f (x> +y°) =xf (y?) +yf (x?),
para quaisquer numeros reais x, y.
10. (AIME-2020) Seja P um ponto escolhido aleatoriamente no interior de um quadrado

unitdrio de vértices (0,0), (1,0), (1,1), e (0,1). A probabilidade de que a inclinacao

da linha determinada por P e o ponto (%, %) é maior ou igual a % pode ser escrito

como T, onde m e n sdo relativamente inteiros primos. Determine m + n.



Problemas propostos e solugoes

Publicamos aqui algumas das respostas dos problemas da Eureka! 37 a 39 que foram
enviadas por nossos leitores.

Solugao dos Problemas Propostos Eureka! - 37

157. Sejam x e y inteiros positivos tais que x2" — 1 é divisivel por 2™y + 1 para todo
inteiro positivo n. Prove que x = 1.

Solugao: Suponha por absurdo que x > 1. Escrevay = 2"z, com 1 € N e z impar. Seja Q
o produto de todos os primos q < x? tais que ¢ = 3 (mod 4) e q nao divide 2z+1, e seja
n=1+(r+1)e((2z4+1)2Q) > r+2. Como 2+1@((22+1)*Q) =1 (mod (2z4+1)2Q), segue
que 2" Ty4+1=2"z+1= 2060@((2y+1%Q) . (224-1) = 2z+1 (mod (2z+1)?Q). Assim,
2z4+12"""y+1 e, se q é um fator primo de Q, como ¢ néo divide 2z+ 1, segue que q néo
divide 2" "y +1. Escrevendo 2™ "y+1 = (2z+1)m, como 2™ "y+1=2"z+1=2z+1
(mod (2z + 1)?), segue que m = 1 (mod 2z + 1), e, em particular, mdc(m,2z + 1)=1.
Como 2"z+1=1 (mod4) e 2"z+1=2""T"y+1= (224 1)m, temos m =3 (mod 4),
pois, como z é fmpar, 2z+ 1 = 3 (mod 4). Em particular, m tem algum fator primo
g = 3 (mod 4), e como ¢ nédo pode ser fator primo de 2z + 1 nem de Q, segue que
d > x2. Por outro lado, como 2™ "y + 1 divide x2" ' —1, temos em particular x2° =1
(mod ). Como também temos x9~! = 1 (mod q), segue que, se d é a ordem de
x médulo g (isto é, o menor inteiro positivo k tal que x* = 1 (mod §)), temos que
dlmdc(2™ ", —1). Por outro lado, como § =3 (mod 4), temos que §—1 =2 (mod 4),
e portanto mdc(2™ ", § — 1) = 2. Assim, d|2, donde x? =1 (mod §), ou seja, q|x* — 1,
absurdo, pois q > xZ.

158. Ache todas as funcgoes f : R — R tais que

flxy+1) =f(x+y) + f(x)f(y),vx,y € R.

Solugao:
Fazendo x =y = 1, obtemos f(2) = f(2) + f(1)?, donde f(1) = 0, e, fazendo y = 0,
obtemos 0 = f(1) = f(x) + f(x)f(0), donde, ou f é identicamente nula, ou f(0) = —1.
Caso i) f(—1) nao é 0. Seja g(x) = f(x + 1). Entao f(x) = g(x — 1), e a equagao
funcional fica g(xy) =g(x+y —1) + g(x — 1)g(y — 1), para quaisquer x,y reais. Temos
g(0) =f(1) =0e g(—1) = f(0) = —1. Além disso, g(—2) = f(—1) ndo é 0. Fazendo
x =2ey = —1, obtemos g(—2) = ¢g(0) + g(1)g(—2) = g(1)g(—2), donde ¢g(1) = 1.
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Fazendo y = 2, obtemos g(2x) = g(x+1) +g(x—1)g(1) = g(x+ 1)+ g(x—1), para todo
x. Fazendo y = —1, obtemos g(—x) = g(x —2) + g(—2)g(x — 1) = g(x —2) +c.g(x — 1),
onde ¢ := g(—2). Trocando x por —x, obtemos g(x) = g(—(x + 2)) + c.g(—(x+ 1)) =
g(x)+c.glx+1)+c(gx—1)+c.g(x)), donde 0 =g(x+ 1) + g(x — 1) + c.g(x). Como
gl—(x+1)) = glx —1) + c.g(x), temos 0 = g(x + 1) + g(—(x + 1)) = 0, ou seja,
g(y) + g(—y) = 0 para todo y. Trocando (x,y) por (—x, —y), obtemos g(xy) = g(—x —
y—1+g(—x—1)g(—y—1) = —g(x+y+1)+g(x+1)g(y+1). Da equagio funcional de g,
temos g((x+2)(y+2)) = g(x+y+3)+g(x+1)g(y+1). Portanto, g(xy)+g(x+y-+1) =
gx+MNgly+1) =gl(x+2)(y+2) —glx+y+3), donde g(xy + 2x + 2y + 4) =
gl(x+2)(y+2) =gxy)+gx+y+1)+gx+y+3) =glxy)+9g(2x+2y+4) (usando
a identidade g(2u) = g(u+ 1)+ g(u—1) para u =x+y + 2).

—

Vamos usar isso para mostrar que g(u+v) = g(u)+g(v) para quaisquer u, v reais. De
fato, fazendo y = —x, obtemos —g(x? —4) = g(—x*+4) = g(—x?)+g(4) = —g(x?)+g(4),
e logo g(x? —4) = g(x?) — g(4), que, junto com g(—x? +4) = g(—x?) + g(4) implicam
que g(z+4) = g(z) + g(4) para todo z real, Daf segue por uma indugdo simples que
g(z+4k) = g(z) + k.g(4), para todo z real e todo k natural. Dados u e v reais, podemos
escolher k natural tal que (w)2 > 4u, e o sistema 2x + 2y +4 =v+4k,xy = u
terd solugao real x,y, donde g(u+v) +k.g(4) = glu+v+4k) =g(xy+2x+2y+4) =
glxy) + g(2x + 2y +4) = g(u) + g(v +4k) = g(u) + g(v) + k.g(4), e logo g(u+v) =
g(w)+g(v). Usandoisso (e g(1) =1) em g(xy) = g(x+y—1)+g(x—1)g(y—1), obtemos
9(xy) = g(x) + g(y) — 1+ (g(x)— 1){g(y) — 1), ou seja, glxy) = glx)g(y), para quaisquer
X,y reais. Dai segue que g(x) = x para todo x real. De fato, g(k) = k.g(1) = k para todo
k natural, e, como g(—x) = —g(x) para todo x, segue que g(k) = k para todo k inteiro;
se p e ¢ sdo inteiros e ¢ > 0, p = g(p) = 9(q.p/q) = q.9(p/q), donde g(p/q) = p/q.
Suponha por absurdo que para algum x real g(x) néo seja igual a x; digamos que g(x) < x.
Tome p/q um racional com g(x) < p/q = g(p/q) < x, donde, como x—p/q > 0, terfamos

0 < g(v/x—p/a)? = g ((Vx—P/a)?) = glx—P/d) = glx) = g(p/q) < 0, absurdo.

O caso g(x) > x é andlogo. Portanto f(x) = g(x —1) = x — 1 para todo x real, o que
claramente é uma solucao.

Caso ii) f(—1) = 0. E claro que f identicamente nula d4 uma solucdo. Suponhamos
que nao seja o caso. Entao f(0) = —1 (e f(1) = 0). Fazendoy = —1 em f(xy +1) =
f(x +y) + f(x)f(y), obtemos f(1 —x) = f(x — 1) para todo x real, ou seja, f(—z) = f(z)
para todo z real. Fazendo y = —x, temos f(x? — 1) = f(1 —x?) = f(0) + f(x)f(—x) =
£(0) + f(x)?> > f(0). Assim, se z > —1,f(z) > f(0). Trocando y por —y, temos
fixy—1) = f(1—xy) = f(x—y)+f(x)f(—y) = f(x—y)+f(x)f(y). Subtraindo de f(xy-+1) =
f(x +y) +f(x)f(y), temos f(xy+1)—f(xy—1) = f(x+y) — f(x —y). Assim, se uv = xy,
temos f(x+y)—f(x—y) = f(xy+1)—f(xy—1) = fluv+1)—fluv—1) = flu+v)—flu—v).
Seja h a funcao definida nos reais nao-negativos por h(x) = f(y/x) — f(0) > 0. Para
X,y > 0, temos h(x+y)—h(x) = f(y/x +y)—f(v/x) = f(,/y)—f(0) = h(y) (pois, fazendo
T=(/XFy+vx)/2,s = (VxFy—vx)/2eu=v=,/4/2 temos T+ s = /x + Y,

T—s=yx, u+v=4y,u—v=0ers =y/4 =uv. Assim, para quaisquer x,y > 0
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temos h(x+y) = h(x) + h(y). Como h(1) =f(1)—f(0) =1, e h(x) > 0, para todo x > 0
temos, como no caso i), h(x) = x para todo x > 0, ou seja, f(y/x) — f(0) = x, para todo
x > 0. Assim, f(y) — f(0) = y?, para todo y > 0, donde f(y) =y? + f(0) =y? — 1 para
todo y > 0. Como, paray < 0, f(y) = f(—y) = (—y)?> =1 =y? —1, temos f(y) =y> —1
para todo y real, fungdo esta que satisfaz a equagao funcional.

Assim, temos nesse caso f(x) = 0 para todo x real ou f(x) = x> — 1 para todo x real.

159. Dizemos que un conjunto A C N é progressista se, sempre que x,y € A com x <y,
temos 2y —x € A. Prove que se A é progressista e x,x + aj,x+ az,...,x+ ax € A com
k>2el0<a; <ay<---<agentdao x+ aj +ax —3d,x+ a; +ax —2d € A, onde
d = mdc(as, az,...,ax).

Solugao: Substituindo x por x + 2a;, temos un problema analogo, onde o novo menor
elemento é x + a;. O mdc nao muda, pois mdec(aj,a; —aj,a3 — ay,...,ax — aj) =
mdc(ay, az,...,ax), a expressao correspondente a x + aj + ax = (x+a7) + (x + ax) —x
ndo aumenta pois x + aj + ax = (x + 2a7) + (x + ax) — (x + a;) ndo aumenta, mas o
didmetro (diferenca entre o maior e o menor elemento da lista), que era ay, e agora é
o0 maximo entre a; e ax — aj, diminui. O nimero de elementos da lista ndo aumenta,
mas pode diminuir, pois 2a; pode ser igual a algum a; com j > 1. Todos os nimeros
que aparecem sao da forma x + kd, com k natural. Repetindo esse procedimento, em
algum momento haverd apenas dois ntimeros na lista (pois o didmetro nao pode diminuir
indefinidamente), e imediatamente antes os nimeros devem ser y,y + d,y + 2d, com
y+3d=@y+d+y+2d)—y<x+a;+ag,elogoy <x+aj+ax—3détal quey
e Yy + d pertenecem a A, o que resolve o problema.

160. Considere a sequéncia definida por a, = [nv2003| para n > 1. Prove que, para
quaisquer inteiros positivos m e p, a sequéncia contém m elementos em uma progressao
geométrica de razao maior que p.

Solugdo: Como 442 < 2023 < 452, segue que /2023 é irracional, pois nao é inteiro, e,
se fosse da forma p/q, com p, q inteiros, ¢ > 1 e mdc(p, q) = 1, terfamos, elevando ao
quadrado, 2023 = p?/q?, absurdo, pois a fracio p?/q? é irredutivel e g > 1.

Vamos provar que, se &« > 0 é irracional, entdo, dado um inteiro positivo N, existem
inteiros positivos q,T tais que r < qo < T+ % Dado N € N, consideramos os N + 1
elementos de [0,1) da forma {ja} :=jo — |j| (parte fraciondria de j), com 0 <j < N.
Como [0,1) = E:_ol [%, kT“), existem dois desses elementos, digamos {j; a} e {j2 &} num
mesmo intervalo [, kNj) e, portanto, se j1 <jz, k=j2—j1 >0es = |jra| — [jre],
temos 0 < [ka —s| < % Se qou —s > 0, basta tomar r =s e q =k. Jd se qx —s <0,
escrevemos ko =s—¢, com 0 < ¢ < % Seja M € N tal que Me <1 < (M +1)e. Temos
entdo 1 —Me < e < %, donde Mko = Ms — Me = Ms — 1+ (1 — Me), e basta tomar
T=Ms—1eq=Mk.

Tomamos & = v/2003 e N = (p + 1)™. Existem entdo inteiros positivos ¢, r tais
que T < qv2003 < 7+ % Portanto, para t inteiro com 1 <t < N = (p + 1)™, temos



100 Problemas propostos e solugoes

[tqv/2003] = tr. Tomando t = (p+1)™, com 1 < n < m, obtemos a progressao
geométrica desejada.

161. Um sapo faz um caminho infinito no plano euclidiano da seguinte forma: no inicio ele
estd no ponto (0,0), e, se num dado momento estd no ponto (x,y), no segundo seguinte
salta para o ponto (x + 1,y) ou para o ponto (x,y + 1). Prova que, para todo inteiro
positivo n, existe uma reta 1 tal que o sapo passa por pelo menos n pontos de 1 em seu
caminho.

Solucao: Seja (xi, Yk ) a posigdo do sapo apds k passos. Temos x+yx = k,Vk € N. Dado
um inteiro k > 1, sejam ay = min{szX“J,n >keby= max{fzkxﬂ,n > k. Assim, o

n n
intervalo Iy, = [%, %] é o menor intervalo cujos extremos sao recionais com denominador
k 2 Xn _ _ X .
2% que contém os valores de ™ = miyn bara todo n > k; temos Iy D Ix 1,Vk > 1, ou

seja, os Iy formam uma familia de intervalos encaixados. Temos entdo Ni>11k = [c, d]
para certos ¢,d com 0 < ¢ < d < 1. Temos dois casos:

i) ¢ = d. Nesse caso, como na solugdo do problema 160, existem p,q € N com
q>0e0<p<qtaisque 0 < qc—p < 61—“ (a solugao do problema 160 trata do

caso em que c é irracional, e o caso em que ¢ = % é trivial). Existe mp > 1 tal que

[P —cf < 6T11.7q para todo m > moy. Temos |qxm — p(Xm + Ym)| = lqxm — pm| =
mlgZ™ —p|l < mlqgc —pl+mqliE —cf < 25 + g = 35- Dado M > my, existem

M —mgp + 1 valores de m com my < m < M, para os quais |qXm — P(Xm + Ym)| assume
no méaximo 1+ 23—’\4 valores distintos, de modo que algum valor s deve ser assumido pelo
menos

M—mgy+1 -~
2M
valores distintos para M grande (de fato basta tomar M = 3(n 4 my)). Assim, haverd
pelo menos n pontos percorridos pelo sapo na reta qx —p(x +y) = s.

ii) ¢ < d. Nesse caso, escolha um racional g com ¢ < % < d. Segue da definicao
de c e d que T — £, (e logo também qxm —pm = qxXm — p(xXm + Ym)) troca de sinal
infinitas vezes. Como, para todo m > 1, |qx;m — P(Xm + Ym) — (q%m+1 — P(Xm+1 +
Ym+1))l < max{p,q} = q, se gxm —P(Xm +Ym) € Xm 1 —P(Xm41 +Ym+1) tém sinais
distintos, temos |qxm — p(xm + Ym)| < g, e portanto, para algum inteiro s com |s| < q,
qXm — P(Xm + Ym) = s para infinitos valores de m, o que resolve o problema.

162. Uma prova da IMO tem 6 problemas, e cada problema de cada participante recebe
uma nota inteira n com 0 < n < 7. Dizemos que duas provas de dois participantes sao
comparaveis se uma delas, digamos a do participante A é menor ou igual a prova do
participante B, no seguinte sentido: em cada um dos 6 problemas a nota do participante
A é menor ou igual & nota do participante B. Determine o menor inteiro positivo m
tal que, se houver m participantes numa IMO, necessariamente havera duas provas
comparaveis.
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Solugao: Vamos considerar uma situagio mais geral em que hé k > 1 questoes, e, para
1 <j <k, a questdo j vale nj pontos, i.e., a nota da questdo j pertence a {0,1,2,...,n5}.
Assim, o conjunto das provas (ou, mais precisamente, das pontuagdes) possiveis é
X = H;<:1{0, 1,2,...,n5}. Dada uma prova P = (my, ma,...,m;) € X, sua nota total é
n(P) = Z}l] my. Um subconjunto C C X é uma cadeia se duas provas quaisquer em C
sdo compardaveis (no sentido do enunciado); é uma cadeia lenta se existem inteiros a < b
tais que {n(P),P € C} = [a,b] N Z, e é uma cadeia simétrica lenta se tais inteiros a,b
satisfazem a +b = 2?21 n; (que é a nota maxima da prova, ou seja, se a nota média da
cadeia lenta é metade da nota méxima).

Vamos provar por indugdo em k que X sempre pode ser decomposto como uma
unido disjunta de cadeias simétricas lentas. O caso k = 1 é trivial: X é uma cadeia
simétrica lenta nesse caso. Para fazer o passo de indugao, basta provar que, se C =
{P1 < Py < -++ < Py} é uma cadeia simétrica lenta, entdo é possivel decompor C x
{0,1,2,...,n141} como uma unido disjunta de cadeias simétricas lentas. Isso pode ser
provado por indugdo em m, tomando uma das novas cadeias simétricas lentas como
(P1,0), (P1,1)y..+, (P1,nk41), (P2yit1)y -+ oy (PmyTikt1), sobrando {P2,P3,...,Pm} x
{0,1,...,ny 1 — 1} para decompor como unido de cadeias simétricas lentas, o que é
possivel pela hipétese de inducao.

Assim, o conjunto das provas da IMO pode ser decomposto como uma unido de
cadeias simétricas lentas. Se todas as provas de um conjunto sdo incomparaveis, hé no
maximo uma dessas provas em cada cadeia simétrica lenta, e logo o niimero de provas
no conjunto é no maximo o niimero de cadeias na decomposi¢ao. Por outro lado, cada
cadeia simétrica lenta contém exatamente uma prova com nota total 21, de modo que o
conjunto tem no maximo N elementos, onde N é o niimero de provas com nota total 21,
e como duas provas distintas com nota total 21 sdo sempre incomparaveis, a resposta é
N + 1. Basta agora calcular N.

O ntmero de solugdes de x7 +x2 +x3 + X4 + X5 + %6 = 21 com x; > 0,Vj < 6 ¢
(256). Se, para j < 6, Xj é o conjunto de tais (x1,...,Xg) com x; > 8, queremos excluir a
unido dos Xj. Como néo pode haver trés valores de x; > 8 (pois a soma dos x; é 21),
o nimero de elementos da unido dos Xj é ngs IX;| — Z1§i<5§6 IXi N X;|. Escrevendo

x; = 8 +1j para as solucdes em Xj, segue que |X;| = ('¥) paraj < 6e [XiNXjl = (V)
para 1 <i<j <6. Assim, N = (256) 76(158) + (g) (150) = 18152, e a resposta do problema
é N +1=18153.

Solucao dos Problemas Propostos Eureka! - 39
163. A equacio quadratica x2 —3x4q = 0 possui duas raizes « e . Se &>+ p3 = —81.

Determine o valor de q.

Solugdo: Temos que x> —3x+q = 0. Como « e B sio suas duas raizes, podemos escrever
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a equagdo como (x — «)(x — 3) = 0. Dessa forma, obtemos as duas relagdes a seguir:
x+PB=3 e afp=q (1)
Elevando a primeira relacdo ao cubo temos que
27 = (a+B)? = o + B> + 3aB(ax + B),

108
desta forma 27 = —81 + 3af3 - 3 e portanto «fp = o = 12.

164. Em um tridngulo ABC sejam D e E pontos sobre os lados BC e AC, respectiva-
mente, tais que AB = BD = AE. Se ZBAE = 60° e DE = DC, determine a medida do

angulo ZEDC.

Solugao: Primeiro, vamos nomear os angulos de acordo com a figura abaixo:

B

A E C

Observemos que ZDEC = f3, pois DEC é um tridngulo isosceles. Se tracarmos um
segmento que liga B a E obtemos dois novos tridngulos, ABE e BED. Eles também
sao isésceles, sendo que o fato de Z/BAE ser de 60° implica em ABE ser um tridngulo
equilatero.

B
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Dessa maneira, BE = AB = BD, o que implica que o tridngulo EBD ¢ isésceles com
v :=/ZEDB = ZDEB = 180 — «. Agora, observemos que

180=60+v+p e 180=2p+

Substituindo a relagdo que temos para y na primeira equacao acima temos que 3 = oc—60
e, por fim, substituindo na segunda, 180 = 3x — 120, o que nos da

o= 100°.

165. Seja A um subconjunto de 84 elementos do conjunto {1,2,3,...,169} tal que
em A nao existem dois elementos cuja soma é 169. Prove que A possui pelo menos um
quadrado perfeito.

Solugao: Se 169 pertence a A o problema esté resolvido, assim podemos supor que nao
pertence. Observemos que a tnica forma de escrever 169 como soma de dois quadrados
é 169 = 5% + 122, Suponhamos que o conjunto A nao possui nenhum quadrado, em
particular o conjunto B = A U {52} ndo possui dois niimeros tais que sua soma seja 169.
Agora, consideremos os 84 conjuntos

{(1,168},{2,167},...,{84, 85}.

Como B pode ter no maximo um elemento em comum com cada um desses conjuntos,
segue que B tem no maximo 84 elementos, o que é contraditorio.

Uma pergunta interessante é se podemos trocar 84 por um ntmero menor, ou
equivalentemente podemos transformar a pergunta na seguinte: Qual é o menor valor
de n tal que se temos um subconjunto de {1,2,...,169} com n elementos tais que nao
existem dois elementos em A com soma igual a 169, entdo A possui pelo menos um
quadrado.

166. E possivel encontrar 2005 quadrados perfeitos diferentes tais que sua soma
também é um quadrado perfeito?

Solugao: Primeiro, observe que para qualquer n par, existem s e t naturais tais que

n? = s? —t%. Isso ocorre pois, da igualdade obtemos n? = (s +t)(s —t) e, como n é par,

2
n n
5 é natural o que permite tomar s +t = > e s —t =2, e, portanto, possiveis valores

que satisfazem a relagao sao

42 nt_2

que numeros naturais. Observemos que no caso que n seja impar, também é possivel
fazer um processo similar obtendo que

5, (n?+1 27 n?—1
T2 2

2
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Sendo assim, dada uma soma de quadrados perfeitos que gera um quadrado perfeito

a%+a§+-~-+aﬁ=n2,

se n é par podemos realizar o processo anterior, obtendo uma soma com k + 1 elementos,
agora, se N nao ¢ par, multiplicamos a equacéo por 4 dos dois lados, ficando com (2n)?,
0 que permite realizar o processo desejado. Dessa forma, a partir de uma expressdo como
32 + 4% =52 é possivel encontrar 2005 quadrados perfeitos cuja soma seja um quadrado
perfeito.

Uma segunda solucdo, pode ser obtida de forma indutiva da seguinte forma: Se n é
soma de k quadrado, digamos

a%—!—a%—l—---—i—ai:nz,

como (3n)? + (4n)? = (5n)?, segue que usando estas duas tltimas equacdes obtemos que
(3a1)? + (3a2)? + -+ + (3ax)? + (4n)? = (5n)?

isto é, (5n)? é soma de k + 1 quadrados.
n? +1

[nj2+2
Solugao: O problema é trivial com o enunciado original, pois o numerador sempre é
menor que o denominador. Se no enunciado permitimos que o n seja um nimero real,
neste caso o quociente é igual a 1 para infinitos valores de n. O problema é interessante
e correto supondo que n pode assumir valores racionais.

Suponhamos que n ¢ um nimero racional, assim ele pode ser escrito como n = m+ ¢,
onde n, a, b sdo nimeros inteiros, com 0 < a < b e primos entre si. Como o quociente

nZ 41

m sempre esta entre 0 e 2, a unica possibilidade para ser inteiro é que seja igual a

1. Assim

167. Prove que nao ¢ inteiro para nenhum n € N.

(m—l—%)z—l-] =m?+2.

aZ

Expandindo obtemos que 2? + b2 + 1 =2 e multiplicando por b* obtemos que

2amb + a® = b2,
Desta igualdade segue que a? = b(b — 2am), logo b divide a? o que é contraditério.

168. Determine todas as fungoes * : Q — Q que sdo comutativas, associativas e satisfazem
0x0=0e (x*xc)*x(yx*xc)=(x*xy)+c,Vx,y,c € Q.

Solucgdo: Seja f(x) = x*0. Temos f(0) =0 e xxy = (x—y+y)*(0+y) = (x—y)*0+y =
flx—y)+y,vx,y € Q. A condigdo de * ser comutativa se escreve como y + f(x —y) =
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x*xy =y*xx =x—+f(y—x), ouseja, fly—x) =y—x+"f(x—y),vx,y € Q, o que equivale
a f(z) =z+ f(—z),Vz € Q. A associatividade se escreve como z+ f(y —z+f(x —y)) =
z+f(xxy—z) = (xxy)*xz = x*(y*z) = (y*z)+f(x—(y*z)) = z+f(y—2z)+f(x—z—f(y—=z)),
ou seja, fly—z+f(x—y)) = fly—z)+f(x—z—f(y—z)), que equivale (fazendo u =x—y
ev=y—2z)af(v+f(u)) =~fv)+flu+v—~Ffv)),vu,v € Q. Fazendo v = 0 obtemos
f(f(u)) = f(u),vu € Q. Seja I a imagem da funcao f. Entdo f(y) =y < y € 1. Por
outro lado, como f(y) =y + f(—y), temos y € I &= f(y) =y < f(—y) =0. Além
disso, dados v, z € Q, fazendo u = z+f(v) —v, temos f(v) +f(z) = f(v) +f(u+v—~(v)) =
f(v+f(u)), ouseja, I+ 1 C1 (i.e., se 1y,s € I entdo v+ s € I). Daf segue por inducao
que se v € I en € N entao nr € 1. Nao podemos ter dois elementos em I com sinais
contrérios: se r = p/q > 0 e s = —m/n < 0 pertencessem a I (com p,q, m,n > 0),
terfamos pm = qmr € [ e —pm = pns € I, mas entdo f(pm) = pm, donde f(—pm) =0,
mas devemos ter f(—pm) = —pm, absurdo. Assim, I C QT = {x € Q;x > 0} ou
IcQ ={xeQx <0} Nao ha perda de generalidade em supor que I ¢ Q". De
fato, se f satisfaz as condigbes acima, a fungdo g(x) = —f(—x) também satisfaz: temos
g(0) =0, g(z) = —f(—z) = z—f(z) = z+g(—2),Vz € Qe g(vt+g(u)) = —f(—(v+g(u))) =
—f(—v+f(—u)) = —(f(—v) + f(—u—v —f(—v))) = g(v) + g(u+v —g(v)). Assim, se a
imagem de f estd contida em Q, entdo a imagem de g estd contida em Q.

Vamos entdo supor que a imagem I de f estd contida em Q. Vamos provar que
I =Q™, e portanto f(x) = max{x, 0}, Vx € Q, o que implica x*xy = f(x—y)+y = max{x—
y,0} +y = max{x,y}, Vx,y € Q, o que é uma solu¢do (no caso em que I C Q~ temos
g(x) = —f(—x) = max{x, 0}, Vx € Q, donde f(x) = —max{—x,0} = min{x,0},Vx € Q, e
x*y = f(x —y) +y = min{x —y,0} +y = min{x, y},Vx,y € Q, o que também é uma
solugao).

Como (1) = 1+ f(—1), temos f(1) # 0 ou f(—1) # 0. Escolhendo a € {—1,1}
tal que f(a) # 0, teremos f(a) > 0, Escrevendo f(a) = m/n, com m e n inteiros
positivos, temos m/n € I, donde m = n.m/n € 1. Suponha que existe y > 0 tal
que y ¢ 1. Em particular f(y) # y. Assim, d = f(y)—y # 0, e d = f(—y) € L
Em particular d > 0. Escrevamos f(y) = a/u e f(—y) = b/v, com a,u,b,v inteiros
positivos. Como f(y) = a/u e f(—y) = b/v pertencem a I, (muv — 1)f(—y) + f(y) =
mub+f(y)—f(—y) = mub+y € [. Assim, para 0 <j < muv—1, temos j(mub+y) € L e
(muv—1)mub+jy = (muv—1—j)mub+j(mub+y) € I, donde f((muv—1)mub+jy) =
(muv—1)mub+jy para 0 < j < muv—1. Note agora que, se f(z) =z e f(z+y) =z+y
entdoz+y="~f(z+y)=fly+f(z)) =fly) +fly+z—1~f(y)) =y +d+ f(z—d), donde
f(z—d) = z—d. Assim, se f(z+jy) =z+jy para 0 < j < muv—1, paraj =0
obtemos f(z) = z, donde z € I e z+ muvy = z+ m(av — bu) € I. Da observacao
anterior, segue que f(z—d+jy) = z—d+jy para 0 < j < muv — 1. Por inducdo
segue que f(z—kd +jy) = z—kd +jy para todok € Ne 0 <j < muv—1. Em
particular, para j = 0, temos f(z — kd) = z — kd para todo k € N. Como ja mostramos
que f((muv — 1)mub + jy) = (muv — 1)mub + jy para 0 < j < muv — 1, segue que
f((muv — 1)mub — kd) = (muv — 1)mub — kd para todo k € N, mas, como d > 0,
podemos tomar k € N tal que t = (muv — 1)mub — kd < 0, o que é uma contradigao,
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pois terfamos f(t) =t € I, mas I C Q*, absurdo.
Assim, as duas operagdes que satisfazem as condi¢des do enunciado sdo x xy =
max{x,y}, Vx,y € Q e x * y = min{x, y}, Vx,y € Q.

As resolugdes dos problemas 157 a 168 foram sugeridas pelo professor
Carlos Gustavo Tamm de Aratjo Moreira (Gugu) - IMPA.



Problemas propostos

Convidamos o leitor a enviar solugées dos problemas propostos e sugestoes de novos
problemas para préximos nimeros. (As solugoes devem ser enviadas para o email con-
tato@associacaodaobm.org).

169. Qual o menor nimero de operagbes necessarias para chegar ao ntmero 25
partindo do ntimero 11 utilizando apenas a multiplicacdo por 2 e a subtragdo de 37

170. Seja r a raiz de maior médulo do polindmio P(x) = x* + 3x> — 3x? +3x — 1.
Determine inteiro mais préximo de 17.

171. Considere a equacao x® + 5x> +4x* + 4x? +5x + 1 = 0. Se uma das raizes da
equacio é w # —1, qual o valor de 3w* + 9w — 9w? + 9w + 47

172. Sejam a, b e ¢ niimeros reais positivos tais que

at+b+c+ab+bc+ca+abc=7.

Prove que vVaz + b2 +2+vb2+c2 +2++vVc2 + a2 +2>6.

173. Seja AABC um tridngulo com incentro I. Os pontos P e Q foram escolhidos
sobre os segmentos BI e CI de tal forma que ZBAQ ¢é o dobro de ZPAQ. Se D é o ponto
de contato do incirculo com o lado BC, prove que ZPDQ = 90°.

174. Em um tridngulo acutangulo ABC que tem circuncirculo de centro O, sejam
D e E pontos sobre AB e AC respectivamente, tais que DE e AO sado perpendiculares.
Seja K um ponto sobre a reta BC diferente do ponto de interse¢do de AO com BC. A
reta AK corta o circuncirculo de ADE em L, um ponto diferente de A. Seja M o ponto
simétrico de A com respeito a linha DE. Mostre que K, L, M e O formam um quadrilitero
conciclico.
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175. Quatro circunferéncias de raio 1 com centro em A, B, C e D estdo no plano de tal
forma que cada circunferéncia é tangente a duas das outras. Uma quinta circunferéncia
passa pelos centro de duas das circunferéncias e é tangente as outras duas. Encontrar os
possiveis valores para a area do quadrilatero ABCD.

s
1
176. Mostre que JO de = > .

177. Mostre que a matriz

20212021 2022022 20242024 20262026 20282028 20302030
20212032 2022021 20242026 20262028 20282024 20302032
20212024 2022032 20242021 20262026 20282028 20302022
20212028 2022026 20242024 20262021 20282022 20302032
20212028 2022026 20242024 20262022 20282021 20302032
20212028 2022026 20242024 20262022 20282032 20302021

é invertivel.

= 1
178. Euler provou que Z i . Sendo P ={2,3,5,7,11,13,...}, o conjunto dos
n—1 .
ntimeros primos, determine o valor H 27

peEP

179. Se n > 2 é um inteiro, mostre que pelo menos um entre os nimeros 2™ — 1 e
2™ + 1 nao é primo.

180. Sejam a, b, c,x,y e z nimeros inteiros tais que
5 5 5
ax” + by’ +cz’ > ax+ by + cz.

Mostre que ax® + by + cz®> > ax + by + cz + 30.

181. Prove que existe um niimero real o > 1 tal que, para todo inteiro positivo n,
{an} =™ — |a™] € (1/3,2/3) e, além disso, |a™| é par se, e somente se, 1. é primo.

Os problemas 169 a 174 foram enviados pelo professor Fabio Brocheiro -
UFMG; 175 a 180 foram propostos por Carlos A. Gomes - UFRN ; o problema
181 por Carlos Gustavo Tamm de Aratjo Moreira (Gugu) - IMPA.
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ALAGOAS

Cristiane Franca Nunes Moreira

- PIRANHAS

Krerley Irraciel Martins Oliveira ~UFAL ~ MACEIO

AMAPA
Arthur william Matias Gongalves IFAP LARANJAL DO JARI
André Luiz Dos Santos Ferreira IFAP MACAPA

Lucicleuma Lobato do Amaral -
Marleson Réndiner dos Santos Ferreira -
Tobias de Cabral Braga -

PORTO GRANDE
SANTANA
PORTO GRANDE

XIQUE-XIQUE
FEIRA DE SANTANA
ILHEUS

SALVADOR

AMAZONAS
Disney Douglas de Lima Oliveira ~UFAM  MANAUS

BAHIA
Gabriel Farias Silva -

Marcos Grilo Rosas UEFS
Nestor Felipe Castafieda Centurién -

Samuel Barbosa Feitosa UFBA
CEARA

Antoénio Caminha Muniz Neto UFC
Edvalter da Silva Sena Filho -

Flavio Franca Cruz URCA
Francisco Odécio Sales IFCE
Romildo José da Silva UFC
Samara Costa Lima URCA

FORTALEZA

SOBRAL

JUAZEIRO DO NORTE
ITAPIPOCA
FORTALEZA
JUAZEIRO DO NORTE

DISTRITO FEDERAL

Diego Marques UNB  BRASILIA

ESPIRITO SANTO

Floréncio Ferreira Guimardes Filho ~UFES  VITORIA
Valdinei Cezar Cardoso UFES SAO MATEUS

GOIAS

Ana Paula de Aratjo Chaves UFG  GOIANIA

Maércio AntOnio Ferreira Belo Filho

- RIO VERDE

Otavio Marcal Leandro Gomide UFG GOIANIA
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MARANHAO

Arlane Manoel Silva Vieira UFMA
Cleber Aratjo Cavalcanti -
Francisco Pessoa de Paiva Junior -

MATO GROSSO

UNEMAT
UFMT

Diego Piasson
Fernanda Palhares Maringolo Sekimura

coDO
SAO LUIZ
SANTA INES

BARRA DO BUGRES
CUIABA

MATO GROSSO DO SUL

Edgard José Dos Santos Arinos

MINAS GERAIS

COLEGIO MILITAR

CAMPO GRANDE

Aldo Peres Campos e Lopes - ITABIRA
Antonio Carlos Nogueira UFU UBERLANDIA
Beatriz Casulari da Motta Ribeiro UFJF JUIZ DE FORA
Carlos Eustdaquio Pinto - BETIM
Ceile Cristina Ferreira Nunes - PIUMHI
Daniele Cristina Gongalves UEMG JOAO MONLEVADE
Joelson Dayvison Veloso Hermes IFSULDEMINAS INCONFIDENTES
José Jozelmo Grangeiro Vieira CEFET-MG TIMOTEO
LUcio Paccori Lima UFV FLORESTAL
Luccas Cassimiro Campos UFMG BELO HORIZONTE
Marcio Fialho Chaves UFLA LAVRAS
Renato Machado Pereira IFSULDEMINAS POCOS DE CALDAS
Rosivaldo Antonio Gongalves UNIMONTES MONTES CLAROS
Savio Ribas UFOP OURO PRETO
PARA

Adenilson Pereira Bonfim ETRB  BELEM

Claudionei Pereira de Oliveira - MARABA

Jocimar Albernaz Xavier IFPA PARAGOMINAS

Mario Tanaka Filho UFOPA SANTAREM

Valdelirio da Silva e Silva - CASTANHAL

PARAIBA
Felipe Wallison Chaves Silva UFPB JOAO PESSOA

Marcelo Carvalho Fereira -

CAMPINA GRANDE
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PARANA
Bruno Leonardo Macedo Ferreira ~UTFPR  GUARAPUAVA
Eduardo de Amorim Neves UEM MARINGA
Elisangela Dos Santos Meza UEPG PONTA GROSSA
José Carlos Corréa Eidam UFPR CURITIBA
Magna Natélia Marin Pires - LONDRINA
Marciano Pereira UEPG PONTA GROSSA
PERNAMBUCO

Daniel dos Santos Rocha - ARCOVERDE

Jonas José Cruz dos Santos IFPE GARANHUNS

Luiz Paulo Freire Moreira UFPE RECIFE

Thiago Dias Oliveira Silva UFRPE RECIFE

PIAUI

Antoénio Cardoso do Amaral UFPI TEREZINA

Carlos Augusto David Ribeiro UFPI PARNAIBA

Francimar de Brito Vieira - CORRENTE

Hilquias Santos de Oliveira - FLORIANO

RIO DE JANEIRO

Alex Cabral Barbosa IFF
Jones Colombo -
Leonardo Augusto Zao IME

Luis Humberto Guillermo Felipe
Nara Bobko

Rafael Filipe dos Santos
Renata Martins da Rosa

RIO GRANDE DO N

COLEGIO PENSI

Carlos Alexandre Gomes da Silva

RIO GRANDE DO

Alvaro Kriiger Ramos UFRGS
Malcus Cassiano Kuhn
Maércio Luis Miotto

Paulo Marcus Hollweg Corréa

UFSM

RONDONIA

Vlademir Fernandes de Oliveira Junior

RORAIMA

Gilson de Souza Costa  UFRR

UFRN

UFRO

CAMPO DOS GOYTACAZES
NITEROI

RIO DE JANEIRO

CAMPO DOS GOYTACAZES
RIO DE JANEIRO

RIO DE JANEIRO

RIO DE JANEIRO

ORTE

NATAL

SUL

PORTO ALEGRE
LAJEADO

SANTA MARIA
SAPUCAIA DO SUL

PORTO VELHO

BOA VISTA
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SANTA CATARINA

Felipe Vieira - BLUMENAL
Milton Kist - CHAPECO
SAO PAULO

Américo Lopez Galvez USP RIBEIRAO PRETO
Armando Ramos Gouveia ITA SAO JOSE DOS CAMPOS
Edson Roberto Abe - CAMPINAS
Débora Bezerra Linhares Liborio FSA SANTO ANDRE
Emiliano Chagas IFSP SAO PAULO
Giuliano Zugliani CAMPINAS
Joao Carlos Ferreira Costa UNESP SAO JOSE DO RIO PRETO

Lucas Colucci
Mauricio Richartz

Marina Mariano de Oliveira

Ronaldo Penna Saraiav

IME-USP SAO PAULO
UFABC SANTO ANDRE
- SAO JOSE DOS CAMPOS
UNISANTOS  SANTOS

Samuel Lil6 Abdalla - SOROCABA
Parham Salehyan UNESP SAO JOSE DO RIO PRETO
Pedro Tavares Paes Lopes ICMC SAO CARLOS
Plamen Kochloukov UNICAMP CAMPINAS
Thais Fernanda Mendes Monis - SANTO ANDRE
SERGIPE
Antoénio Méarcio de Lima Soares - PAULO AFONSO
Valdenberg Aratjo da Silva UFSE ARACAJU
TOCANTINS
Jaime do Espirito Santo Vieira Junior - PALMAS

Samara Leandro Matos da Silva - ARAGUAINA
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